ترغب بنشر مسار تعليمي؟ اضغط هنا

Absence of the Rashba effect in undoped asymmetric quantum wells

55   0   0.0 ( 0 )
 نشر من قبل Richard Harley
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To an electron moving in free space an electric field appears as a magnetic field which interacts with and can reorient the electron spin. In semiconductor quantum wells this spin-orbit interaction seems to offer the possibility of gate-voltage control in spintronic devices but, as the electrons are subject to both ion-core and macroscopic structural potentials, this over-simple picture has lead to intense debate. For example, an externally applied field acting on the envelope of the electron wavefunction determined by the macroscopic potential, underestimates the experimentally observed spin-orbit field by many orders of magnitude while the Ehrenfest theorem suggests that it should actually be zero. Here we challenge, both experimentally and theoretically, the widely held belief that any inversion asymmetry of the macroscopic potential, not only electric field, will produce a significant spin-orbit field for electrons. This conclusion has far-reaching consequences for the design of spintronic devices while illuminating important fundamental physics.

قيم البحث

اقرأ أيضاً

Resonance dielectric response of excitons is studied for the high-quality GaAs/InGaAs heterostructures with wide asymmetric quantum wells (QWs). To highlight effects of the QW asymmetry, we have grown and studied several heterostructures with nominal ly square QWs as well as with triangle-like QWs. Several quantum confined exciton states are experimentally observed as narrow exciton resonances with various profiles. A standard approach for the phenomenological analysis of the profiles is generalized by introducing of different phase shifts for the light waves reflected from the QWs at different exciton resonances. Perfect agreement of the phenomenological fit to the experimentally observed exciton spectra for high-quality structures allowed us to obtain reliable parameters of the exciton resonances including the exciton transition energies, the radiative broadenings, and the phase shifts. A direct numerical solution of Schr{o}dinger equation for the heavy-hole excitons in asymmetric QWs is used for microscopic modeling of the exciton resonances. Remarkable agreement with the experiment is achieved when the effect of indium segregation during the heterostructure growth is taken into account. The segregation results in a modification of the potential profile, in particular, in an asymmetry of the nominally square QWs.
Optically detected cyclotron resonance of two-dimensional electrons has been studied in nominally undoped CdTe/(Cd,Mn)Te quantum wells. The enhancement of carrier quantum confinement results in an increase of the electron cyclotron mass from 0.099$m_ 0 $ to 0.112$m_0 $ with well width decreasing from 30 down to 3.6 nm. Model calculations of the electron effective mass have been performed for this material system and good agreement with experimental data is achieved for an electron-phonon coupling constant $alpha $=0.32.
203 - Q. Shi , M. A. Zudov , C. Morrison 2015
Recent study of a high-mobility 2D hole gas in a strained Ge quantum well revealed strong transport anisotropy in the quantum Hall regime when the magnetic field was tilted away from the sample normal. In the present study we demonstrate that the ani sotropy persists to such high temperatures and filling factors that quantum oscillations are no longer observed. This finding rules out the formation of a stripe phase as a possible origin for the observed anisotropy. However, we also show that the observed anisotropy is not consistent with other known anisotropies, such as those arising from finite thickness effects or surface roughness.
We report density-dependent effective hole mass measurements in undoped germanium quantum wells. We are able to span a large range of densities ($2.0-11times10^{11}$ cm$^{-2}$) in top-gated field effect transistors by positioning the strained buried Ge channel at different depths of 12 and 44 nm from the surface. From the thermal damping of the amplitude of Shubnikov-de Haas oscillations, we measure a light mass of $0.061m_e$ at a density of $2.2times10^{11}$ cm$^{-2}$. We confirm the theoretically predicted dependence of increasing mass with density and by extrapolation we find an effective mass of $sim0.05m_e$ at zero density, the lightest effective mass for a planar platform that demonstrated spin qubits in quantum dots.
We report on experiments allowing to set an upper limit on the magnitude of the spin Hall effect and the conductance by edge channels in quantum wells of PbTe embedded between PbEuTe barriers. We reexamine previous data obtained for epitaxial microst ructures of n-type PbSe and PbTe, in which pronounced nonlocal effects and reproducible magnetoresistance oscillations were found. Here we show that these effects are brought about by a quasi-periodic network of threading dislocations adjacent to the BaF$_2$ substrate, which give rise to a p-type interfacial layer and an associated parasitic parallel conductance. We then present results of transport measurements on microstructures of modulation doped PbTe/(Pb,Eu)Te:Bi heterostructures for which the influence of parasitic parallel conductance is minimized, and for which quantum Hall transport had been observed, on similar samples, previously. These structures are of H-shaped geometry and they are patterned of 12 nm thick strained PbTe quantum wells embedded between Pb$_{0.92}$Eu$_{0.08}$Te barriers. The structures have different lateral sizes corresponding to both diffusive and ballistic electron transport in non-equivalent L valleys. For these structures no nonlocal resistance is detected confirming that PbTe is a trivial insulator. The magnitude of spin Hall angle gamma is estimated to be smaller than 0.02 for PbTe/PbEuTe microstructures in the diffusive regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا