ترغب بنشر مسار تعليمي؟ اضغط هنا

Radio observations of the Horologium-Reticulum Supercluster -I. A3158: Excess star-forming galaxies in a merging cluster?

43   0   0.0 ( 0 )
 نشر من قبل Melanie Johnston-Hollitt Dr
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

No English abstract

قيم البحث

اقرأ أيضاً

79 - C. Mancuso , A. Lapi , Z-Y. Cai 2014
We have combined determinations of the epoch-dependent star formation rate (SFR) function with relationships between SFR and radio (synchrotron and free-free) emission to work out detailed predictions for the counts and the redshift distributions of star-forming galaxies detected by planned Square Kilometer Array (SKA) surveys. The evolving SFR function comes from recent models fitting the far-infrared (FIR) to millimeter-wave luminosity functions and the ultraviolet (UV) luminosity functions up to z=10, extended to take into account additional UV survey data. We used very deep 1.4 GHz number counts from the literature to check the relationship between SFR and synchrotron emission, and the 95 GHz South Pole Telescope (SPT) counts of dusty galaxies to test the relationship between SFR and free-free emission. We show that the SKA will allow us to investigate the SFRs of galaxies down to few Msun/yr up to z=10, thus extending by more than two orders of magnitude the high-z SFR functions derived from Herschel surveys. SKA1-MID surveys, down to microJy levels, will detect hundreds of strongly lensed galaxies per square degree; a substantial fraction of them will show at least two images above the detection limits.
We examine the possible acceleration mechanisms of the relativistic particles responsible for the extended radio emission in Abell 520. We used new LOFAR 145 MHz, archival GMRT 323 MHz and VLA 1.5 GHz data to study the morphological and spectral prop erties of extended cluster emission. The observational properties are discussed in the framework of particle acceleration models associated with cluster merger turbulence and shocks. In Abell 520, we confirm the presence of extended synchrotron radio emission that has been classified as a radio halo. The comparison between the radio and X-ray brightness suggests that the halo might originate in a cocoon rather than from the central X-ray bright regions of the cluster. The halo spectrum is roughly uniform on the scale of 66 kpc. There is a hint of spectral steepening from the SW edge towards the cluster centre. Assuming DSA, the radio data are suggestive of a shock of $mathcal{M}_{SW}=2.6_{-0.2}^{+0.3}$ that is consistent with the X-ray derived estimates. This is in line with the scenario in which relativistic electrons in the SW radio edge gain their energies at the shock front via acceleration of either thermal or fossil electrons. We do not detect extended radio emission ahead of the SW shock that is predicted if the emission is the result of adiabatic compression. An X-ray surface brightness discontinuity is detected towards the NE region that may be a counter shock of $mathcal{M}_{NE}^{X}=1.52pm0.05$. This is lower than the value predicted from the radio emission ($mathcal{M}_{NE}=2.1pm0.2$). Our observations indicate that the SW radio emission in Abell 520 is likely effected by the prominent X-ray detected shock in which radio emitting particles are (re-)accelerated through the Fermi-I mechanism. The NE X-ray discontinuity that is approximately collocated with an edge in the radio emission hints at the presence of a counter shock.
We present here a new spectral energy distribution (SED) fitting approach that we adopt to select radio-excess sources amongst distant star-forming galaxies in the GOODS-Herschel (North) field and to reveal the presence of hidden, highly obscured AGN . Through extensive SED analysis of 458 galaxies with radio 1.4 GHz and mid-IR 24 um detections using some of the deepest Chandra X-ray, Spitzer and Herschel infrared, and VLA radio data available to date, we have robustly identified a sample of 51 radio-excess AGN (~1300 deg^-2) out to redshift z~3. These radio-excess AGN have a significantly lower far-IR/radio ratio (q<1.68) than the typical relation observed for star-forming galaxies (q~2.2). We find that ~45% of these radio-excess sources have a dominant AGN component in the mid-IR band, while for the remainders the excess radio emission is the only indicator of AGN activity. The fraction of radio-excess AGN increases with X-ray luminosity reaching ~60% at Lx~10^44-10^45 erg/s, making these sources an important part of the total AGN population. However, almost half (24/51) of these radio-excess AGN are not detected in the deep Chandra X-ray data, suggesting that some of these sources might be heavily obscured. We also find that the specific star formation rates (sSFRs) of the radio-excess AGN are on average lower that those observed for X-ray selected AGN hosts, indicating that our sources are forming stars more slowly than typical AGN hosts, and possibly their star formation is progressively quenching.
We present integral field spectroscopy observations of two star-forming dwarf galaxies in the Virgo cluster (VCC135 and VCC324) obtained with PMAS/PPak at the Calar Alto 3.5 meter telescope. We derive metallicity maps using the N2 empirical calibrato r. The galaxies show positive gas metallicity gradients, contrarily to what is usually found in other dwarfs or in spiral galaxies. We measure gradient slopes of 0.20 $pm$ 0.06 and 0.15 $pm$ 0.03 dex/$R_e$ for VCC135 and VCC324, respectively. Such a trend has been only observed in few, very isolated galaxies, or at higher redshifts ($z >$ 1). It is thought to be associated with accretion of metal-poor gas from the intergalactic medium, a mechanism that would be less likely to occur in a high-density environment like Virgo. We combine emission line observations with deep optical images to investigate the origin of the peculiar metallicity gradient. The presence of weak underlying substructures in both galaxies and the analysis of morphological diagnostics and of ionised gas kinematics suggest that the inflow of metal-poor gas to the central regions of the dwarfs may be related to a recent merging event with a gas-rich companion.
We study the synchrotron radio emission from extra-planar regions of star forming galaxies. We use ideal magneto-hydrodynamical (MHD) simulations of a rotating Milky Way-type disk galaxy with distributed star formation sites for three star formation rates (SFRs) (0.3, 3, 30 M$_{odot}$ yr$^{-1}$). From our simulations, we see emergence of galactic-scale magnetised outflows, carrying gas from the disk. We compare the morphology of the outflowing gas with hydrodynamic (HD) simulations. We look at the spatial distribution of magnetic field in the outflows. Assuming that a certain fraction of gas energy density is converted into cosmic ray energy density, and using information about the magnetic field, we obtain synchrotron emissivity throughout the simulation domain. We generate the surface brightness maps at a frequency of 1.4 GHz. The outflows are more extended in the vertical direction than radial and hence have an oblate shape. We further find that the matter right behind the outer shock, shines brighter in these maps than that above or below. To understand whether this feature can be observed, we produce vertical intensity profiles. We convolve the vertical intensity profile with the typical beam sizes of radio telescopes, for a galaxy located at 10 Mpc (similar to NGC 891) in order to estimate the radio scale height to compare with observations. We find that for our SFRs this feature will lie below the RMS noise limit of instruments. The radio scale height is found to be $sim 300-1200$ pc , depending on the resolution of the telescope. We relate the advection speed of the outer shock with the surface density of star formation as $rm{v}_{rm adv} propto Sigma_{rm SFR}^{0.3}$ which is consistent with earlier observations and analytical estimates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا