ترغب بنشر مسار تعليمي؟ اضغط هنا

Radio Observations of Star Forming Galaxies in the SKA era

79   0   0.0 ( 0 )
 نشر من قبل Claudia Mancuso
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have combined determinations of the epoch-dependent star formation rate (SFR) function with relationships between SFR and radio (synchrotron and free-free) emission to work out detailed predictions for the counts and the redshift distributions of star-forming galaxies detected by planned Square Kilometer Array (SKA) surveys. The evolving SFR function comes from recent models fitting the far-infrared (FIR) to millimeter-wave luminosity functions and the ultraviolet (UV) luminosity functions up to z=10, extended to take into account additional UV survey data. We used very deep 1.4 GHz number counts from the literature to check the relationship between SFR and synchrotron emission, and the 95 GHz South Pole Telescope (SPT) counts of dusty galaxies to test the relationship between SFR and free-free emission. We show that the SKA will allow us to investigate the SFRs of galaxies down to few Msun/yr up to z=10, thus extending by more than two orders of magnitude the high-z SFR functions derived from Herschel surveys. SKA1-MID surveys, down to microJy levels, will detect hundreds of strongly lensed galaxies per square degree; a substantial fraction of them will show at least two images above the detection limits.

قيم البحث

اقرأ أيضاً

The missing baryons are usually thought to reside in galaxy filaments as warm-hot intergalactic medium (WHIM). From previous studies, giant radio galaxies are usually associated with galaxy groups, which normally trace the WHIM. We propose observatio ns with the powerful SKA1 to make a census of giant radio galaxies in the southern hemisphere, which will probe the ambient WHIM. The radio galaxies discovered will also be investigated to search for dying radio sources. With the highly improved sensitivity and resolution of SKA1, more than 6,000 giant radio sources will be discovered within 250 hours.
We study the synchrotron radio emission from extra-planar regions of star forming galaxies. We use ideal magneto-hydrodynamical (MHD) simulations of a rotating Milky Way-type disk galaxy with distributed star formation sites for three star formation rates (SFRs) (0.3, 3, 30 M$_{odot}$ yr$^{-1}$). From our simulations, we see emergence of galactic-scale magnetised outflows, carrying gas from the disk. We compare the morphology of the outflowing gas with hydrodynamic (HD) simulations. We look at the spatial distribution of magnetic field in the outflows. Assuming that a certain fraction of gas energy density is converted into cosmic ray energy density, and using information about the magnetic field, we obtain synchrotron emissivity throughout the simulation domain. We generate the surface brightness maps at a frequency of 1.4 GHz. The outflows are more extended in the vertical direction than radial and hence have an oblate shape. We further find that the matter right behind the outer shock, shines brighter in these maps than that above or below. To understand whether this feature can be observed, we produce vertical intensity profiles. We convolve the vertical intensity profile with the typical beam sizes of radio telescopes, for a galaxy located at 10 Mpc (similar to NGC 891) in order to estimate the radio scale height to compare with observations. We find that for our SFRs this feature will lie below the RMS noise limit of instruments. The radio scale height is found to be $sim 300-1200$ pc , depending on the resolution of the telescope. We relate the advection speed of the outer shock with the surface density of star formation as $rm{v}_{rm adv} propto Sigma_{rm SFR}^{0.3}$ which is consistent with earlier observations and analytical estimates.
Radio-loud AGN (>10^{22} W/Hz at 1.4 GHz) will be the dominant bright source population detected with the SKA. The high resolution that the SKA will provide even in wide-area surveys will mean that, for the first time sensitive, multi-frequency total intensity and polarisation imaging of large samples of radio-loud active galactic nuclei (AGN) will become available. The unprecedented sensitivity of the SKA coupled with its wide field of view capabilities will allow identification of objects of the same morphological type (i.e. the entire FR I, low- and high-luminosity FR II, disturbed morphology as well as weak radio-emitting AGN populations) up to high redshifts (z~4 and beyond), and at the same stage of their lives, from the youngest CSS/GPS sources to giant and fading (dying) sources, through to those with restarted activity radio galaxies and quasars. Critically, the wide frequency coverage of the SKA will permit analysis of same-epoch rest-frame radio properties, and the sensitivity and resolution will allow full cross-identification with multi-waveband data, further revealing insights into the physical processes driving the evolution of these radio sources. In this chapter of the SKA Science Book we give a summary of the main science drivers in the studies of lifecycles and detailed physics of radio-loud AGN, which include radio and kinetic luminosity functions, AGN feedback, radio-AGN triggering, radio-loud AGN unification and cosmological studies. We discuss the best parameters for the proposed SKA continuum surveys, both all-sky and deep field, in the light of these studies.
The radio continuum spectra of 14 star-forming galaxies are investigated by fitting nonthermal (synchrotron) and thermal (free-free) radiation laws. The underlying radio continuum measurements cover a frequency range of ~325 MHz to 24.5 GHz (32 GHz i n case of M82). It turns out that most of these synchrotron spectra are not simple power-laws, but are best represented by a low-frequency spectrum with a mean slope alpha_nth = 0.59 +/- 0.20 (S_nu ~ nu^-alpha), and by a break or an exponential decline in the frequency range of 1 - 12 GHz. Simple power-laws or mildly curved synchrotron spectra lead to unrealistically low thermal flux densities, and/or to strong deviations from the expected optically thin free-free spectra with slope alpha_th = 0.10 in the fits. The break or cutoff energies are in the range of 1.5 - 7 GeV. We briefly discuss the possible origin of such a cutoff or break. If the low-frequency spectra obtained here reflect the injection spectrum of cosmic-ray electrons, they comply with the mean spectral index of Galactic supernova remnants. A comparison of the fitted thermal flux densities with the (foreground-corrected) Halpha fluxes yields the extinction, which increases with metallicity. The fraction of thermal emission is higher than believed hitherto, especially at high frequencies, and is highest in the dwarf galaxies of our sample, which we interpret in terms of a lack of containment in these low-mass systems, or a time effect caused by a very young starburst.
Magnetic fields are an important ingredient of the interstellar medium (ISM). Besides their importance for star formation, they govern the transport of cosmic rays, relevant to the launch and regulation of galactic outflows and winds, which in turn a re pivotal in shaping the structure of halo magnetic fields. Mapping the small-scale structure of interstellar magnetic fields in many nearby galaxies is crucial to understand the interaction between gas and magnetic fields, in particular how gas flows are affected. Elucidation of the magnetic role in, e.g., triggering star formation, forming and stabilising spiral arms, driving outflows, gas heating by reconnection and magnetising the intergalactic medium has the potential to revolutionise our physical picture of the ISM and galaxy evolution in general. Radio polarisation observations in the very nearest galaxies at high frequencies (>= 3 GHz) and with high spatial resolution (<= 5) hold the key here. The galaxy survey with SKA1 that we propose will also be a major step to understand the galactic dynamo, which is important for models of galaxy evolution and for astrophysical magnetohydrodynamics in general. Field amplification by turbulent gas motions, which is crucial for efficient dynamo action, has been investigated so far only in simulations, while compelling evidence of turbulent fields from observations is still lacking.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا