ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous flux quantization and formation of dipole-flux state in a multiply-connected high-Tc NdBa2Cu3O7-d superconductor

68   0   0.0 ( 0 )
 نشر من قبل Shunichi Arisawa
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High-resolution scanning superconducting quantum interference device (SQUID) microscopy was used to study the flux quantization phenomenon in multiply-connected anisotropic high-Tc NdBa2Cu3O7-d single crystalline thin films. The spatial distribution of internal flux in a hole was found to be non-uniform and changed drastically for applied small fields. With increased fields above 10uT, a local magnetic dipole flux developed inside the hole, in contrast to an isotropic Nb superconductor. The total net flux trapped in a hole was kept to be constant for larger holes, but the abrupt transition of flux quantization state was observed for smaller holes. The possible explanation is given based on the anisotropic dx2-y2-wave order parameter of high-Tc superconductors.

قيم البحث

اقرأ أيضاً

Ultrasound velocity measurements of the unconventional superconductor CeCoIn_5 with extremely large Pauli paramagnetic susceptibility reveal an unusual structural transformation of the flux line lattice (FLL) in the vicinity of the upper critical fie ld. The transition field coincides with that at which heat capacity measurements reveal a second order phase transition. The lowering of the sound velocity at the transition is consistent with the collapse of the FLL tilt modulus and a crossover to quasi two-dimensional FLL pinning. These results provide a strong evidence that the high field state is the Fulde-Ferrel-Larkin-Ovchinikov phase, in which the order parameter is spatially modulated and has planar nodes aligned perpendicular to the vortices.
89 - A.Shibata , M.Matsumoto , K.Izawa 2003
The flux flow resistivity associated with purely viscous motion of vortices in high-quality MgB_2 was measured by microwave surface impedance. Flux flow resistivity exhibits unusual field dependence with strong enhancement at low field, which is mark edly different to conventional s-wave superconductors. A crossover field which separates two distinct flux flow regimes having different flux flow resistivity slopes was clearly observed in H//ab-plane. The unusual H-dependence indicates that two very differently sized superconducting gaps in MgB_2 manifest in the vortex dynamics and almost equally contribute to energy dissipation. The carrier scattering rate in two different bands is also discussed with the present results, compared to heat capacity and thermal conductivity results.
We report the discovery of a self-doped multi-layer high Tc superconductor Ba2Ca3Cu4O8F2(F0234) which contains distinctly different superconducting gap magnitudes along its two Fermi surface(FS) sheets. While formal valence counting would imply this material to be an undoped insulator, it is a self-doped superconductor with a Tc of 60K, possessing simultaneously both electron- and hole-doped FS sheets. Intriguingly, the FS sheet characterized by the much larger gap is the electron-doped one, which has a shape disfavoring two electronic features considered to be important for the pairing mechanism: the van Hove singularity and the antiferromagnetic (Pi/a, Pi/a) scattering.
We report measurements of transfer functions and flux shifts of 20 on-chip high T$_C$ DC SQUIDs half of which were made purposely geometrically asymmetric. All of these SQUIDs were fabricated using standard high T$_C$ thin film technology and they we re single layer ones, having 140 nm thickness of YBa$_2$Cu$_3$O$_{7-x}$ film deposited by laser ablation onto MgO bicrystal substrates with 24$^0$ misorientation angle. For every SQUID the parameters of its intrinsic asymmetry, i. e., the density of critical current and resistivity of every junction, were measured directly and independently. We showed that the main reason for the on-chip spreading of SQUIDs voltage-current and voltage-flux characteristics was the intrinsic asymmetry. We found that for SQUIDs with a relative large inductance ($L>120 $ pH) both the voltage modulation and the transfer function were not very sensitive to the junctions asymmetry, whereas SQUIDs with smaller inductance ($Lsimeq 65-75 $ pH) were more sensitive. The results obtained in the paper are important for the implementation in the sensitive instruments based on high T$_C$ SQUID arrays and gratings.
We report magnetotransport measurements of the critical field behavior of thin Al films deposited onto multiply connected substrates. The substrates were fabricated via a standard electrochemical process that produced a triangular array of 66 nm diam eter holes having a lattice constant of 100 nm. The critical field transition of the Al films was measured near $T_c$ as a function of field orientation relative to the substrate normal. With the field oriented along the normal ($theta=0$), we observe reentrant superconductivity at a characteristic matching field $H_m=0.22,mathrm{T}$, corresponding to one flux quantum per hole. In tilted fields, the position $H^*$ of the reentrance feature increases as $sec(theta)$, but the resistivity traces are somewhat more complex than those of a continuous superconducting film. We show that when the tilt angle is tuned such that $H^*$ is of the order of the upper critical field $H_c$, the entire critical region is dominated by the enhanced dissipation associated with a sub-matching perpendicular component of the applied field. At higher tilt angles a local maximum in the critical field is observed when the perpendicular component of the field is equal to the matching field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا