ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous Flux Flow Resistivity in Two Gap Superconductor MgB_2

90   0   0.0 ( 0 )
 نشر من قبل Yuji Matsuda
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The flux flow resistivity associated with purely viscous motion of vortices in high-quality MgB_2 was measured by microwave surface impedance. Flux flow resistivity exhibits unusual field dependence with strong enhancement at low field, which is markedly different to conventional s-wave superconductors. A crossover field which separates two distinct flux flow regimes having different flux flow resistivity slopes was clearly observed in H//ab-plane. The unusual H-dependence indicates that two very differently sized superconducting gaps in MgB_2 manifest in the vortex dynamics and almost equally contribute to energy dissipation. The carrier scattering rate in two different bands is also discussed with the present results, compared to heat capacity and thermal conductivity results.



قيم البحث

اقرأ أيضاً

We theoretically investigate the magnetic-field-angle dependence of the flux-flow resistivity $rho_{rm f}$ in unconventional superconductors. Two contributions to $rho_{rm f}$ are considered: one is the quasiparticle (QP) relaxation time $tau(bm{k}_{ rm F})$ and the other is $omega_0(bm{k}_{rm F})$, which is a counterpart to the interlevel spacing of the QP bound states in the quasiclassical approach. Here, $bm{k}_{rm F}$ denotes the position on a Fermi surface. Numerical calculations are conducted for a line-node s-wave and a d-wave pair potential with the same anisotropy of their amplitudes, but with a sign change only for a d-wave one. We show that the field-angle dependence of $rho_{rm f}$ differs prominently between s-wave and d-wave pairs, reflecting the phase of the pair potentials. We also discuss the case where $tau$ is constant and compare it with the more general case where $tau$ depends on $bm{k}_{rm F}$.
The microwave complex surface impedance Z_s of Y(Ni_{1-x}Pt_x)_2B_2C was measured at 0.5 K under magnetic fields H up to 7T. In nominally pure YNi_2B_2C, which is a strongly anisotropic s-wave superconductor, the flux flow resistivity rho_f calculate d from Z_s was twice as large as that expected from the conventional normal-state vortex core model. In Pt-doped samples where the gap anisotropy is smeared out, the enhancement of rho_f is reduced and rho_f approaches to the conventional behavior. These results indicate that energy dissipation in the vortex core is strongly affected by the anisotropy of the superconducting gap.
We show that the specific heat of the superconductor MgB_2 (MgB2) in zero field, for which significant non-BCS features have been reported, can be fitted, essentially within experimental error, over the entire range of temperature to T_c by a phenome nological two-gap model. The resulting gap parameters agree with previous determinations from band-structure calculations, and from various spectroscopic experiments. The determination from specific heat, a bulk property, shows that the presence of two superconducting gaps in MgB_2 is a volume effect.
101 - A. Handstein , D. Hinz , G. Fuchs 2001
Bulk textured MgB_2 material of nearly full density showing a weak c-axis alignment of the hexagonal MgB_2 grains parallel to the pressure direction was obtained by hot deformation of a stoichiometric MgB_2 pellet prepared by a gas-solid reaction. Th e texture of the material was verified by comparing the x-ray diffraction patterns of the hot deformed material with isotropic MgB_2 powder. A small, but distinct anisotropy of the upper critical field up to Hc2^{a,b}/Hc2^{c}~1.2 depending on degree of texture was found by resistance and susceptibility measurements. No anisotropy of the critical current density determined from magnetization measurements was found for the textured material.
We measured the microwave surface impedances and obtained the superfluid density and flux flow resistivity in single crystals of a phosphor-doped iron-based superconductor SrFe$_2$(As$_{1-x}$P$_{x}$)$_2$ single crystals ($x=0.30$, $T_c=25 mathrm{K}$) . At low temperatures, the superfluid density, $n_s (T)/n_s(0)$, obeys a power law, $n_s (T)/n_s (0)=1-C(T/T_c)^n$, with a fractional exponent of $n=1.5$-1.6. The flux flow resistivity was significantly enhanced at low magnetic fields. These features are consistent with the presences of both a gap with line nodes and nodeless gaps with a deep minimum. The remarkable difference observed in the superconducting gap structure between SrFe$_2$(As$_{1-x}$P$_{x}$)$_2$ and BaFe$_2$(As$_{1-x}$P$_{x}$)$_2$ in our experiments is important for clarifying the mechanism of iron-based superconductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا