ترغب بنشر مسار تعليمي؟ اضغط هنا

Scaling dimension of fidelity susceptibility in quantum phase transitions

304   0   0.0 ( 0 )
 نشر من قبل Shi-Jian Gu
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze ground-state behaviors of fidelity susceptibility (FS) and show that the FS has its own distinct dimension instead of real systems dimension in general quantum phases. The scaling relation of the FS in quantum phase transitions (QPTs) is then established on more general grounds. Depending on whether the FSs dimensions of two neighboring quantum phases are the same or not, we are able to classify QPTs into two distinct types. For the latter type, the change in the FSs dimension is a characteristic that separates two phases. As a non-trivial application to the Kitaev honeycomb model, we find that the FS is proportional to $L^2ln L$ in the gapless phase, while $L^2$ in the gapped phase. Therefore, the extra dimension of $ln L$ can be used as a characteristic of the gapless phase.



قيم البحث

اقرأ أيضاً

We study the quantum fidelity approach to characterize thermal phase transitions. Specifically, we focus on the mixed-state fidelity induced by a perturbation in temperature. We consider the behavior of fidelity in two types of second-order thermal p hase transitions (based on the type of non-analiticity of free energy), and we find that usual fidelity criteria for identifying critical points is more applicable to the case of $lambda$ transitions (divergent second derivatives of free energy). Our study also reveals limitations of the fidelity approach: sensitivity to high temperature thermal fluctuations that wash out information about the transition, and inability of fidelity to distinguish between crossovers and proper phase transitions. In spite of these limitations, however, we find that fidelity remains a good pre-criterion for testing thermal phase transitions, which we use to analyze the non-zero temperature phase diagram of the Lipkin-Meshkov-Glick model.
95 - S. Panahiyan , W. Chen , 2020
The notion of fidelity susceptibility, introduced within the context of quantum metric tensor, has been an important quantity to characterize the criticality near quantum phase transitions. We demonstrate that for topological phase transitions in Dir ac models, provided the momentum space is treated as the manifold of the quantum metric, the fidelity susceptibility coincides with the curvature function whose integration gives the topological invariant. Thus the quantum criticality of the curvature function near a topological phase transition also describes the criticality of the fidelity susceptibility, and the correlation length extracted from the curvature function also gives a momentum scale over which the fidelity susceptibility decays. To map out the profile and criticality of the fidelity susceptibility, we turn to quantum walks that simulate one-dimensional class BDI and two-dimensional class D Dirac models, and demonstrate their accuracy in capturing the critical exponents and scaling laws near topological phase transitions.
We study fidelity susceptibility in one-dimensional asymmetric Hubbard model, and show that the fidelity susceptibility can be used to identify the universality class of the quantum phase transitions in this model. The critical exponents are found to be 0 and 2 for cases of half-filling and away from half-filling respectively.
Motivated by the quantum adiabatic algorithm (QAA), we consider the scaling of the Hamiltonian gap at quantum first order transitions, generally expected to be exponentially small in the size of the system. However, we show that a quantum antiferroma gnetic Ising chain in a staggered field can exhibit a first order transition with only an algebraically small gap. In addition, we construct a simple classical translationally invariant one-dimensional Hamiltonian containing nearest-neighbour interactions only, which exhibits an exponential gap at a thermodynamic quantum first-order transition of essentially topological origin. This establishes that (i) the QAA can be successful even across first order transitions but also that (ii) it can fail on exceedingly simple problems readily solved by inspection, or by classical annealing.
A unified description of i) classical phase transitions and their remnants in finite systems and ii) quantum phase transitions is presented. The ensuing discussion relies on the interplay between, on the one hand, the thermodynamic concepts of temper ature and specific heat and on the other, the quantal ones of coupling strengths in the Hamiltonian. Our considerations are illustrated in an exactly solvable model of Plastino and Moszkowski [Il Nuovo Cimento {bf 47}, 470 (1978)].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا