ترغب بنشر مسار تعليمي؟ اضغط هنا

Symmetry of standing waves generated by a point defect in epitaxial graphene

77   0   0.0 ( 0 )
 نشر من قبل Cristina Bena
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using scanning tunneling microscopy (STM) and Fourier Transform STM (FT-STM), we have studied a point defect in an epitaxial graphene sample grown on silicon carbide substrate. This analysis allows us to extract the quasiparticle energy dispersion, and to give a first experimental proof of the validity of Fermi liquid theory in graphene for a wide range of energies from -800 meV to +800 meV. We also find evidence of a strong threefold anisotropy in the standing waves generated by the defect. We discuss possible relations between this anisotropy, the chirality of the electrons, and the asymmetry between graphenes two sublattices. All experimental measurements are compared and related to theoretical T-matrix calculations.

قيم البحث

اقرأ أيضاً

It is generally believed that a point defect in graphene gives rise to an impurity state at zero energy and causes a sharp peak in the local density of states near the defect site. We revisit the defect problem in graphene and find the general consen sus incorrect. By both analytic and numeric methods, we show that the contribution to the local density of states from the impurity state vanishes in the thermodynamic limit. Instead, the pronounced peak of the zero-bias anomaly is a power-law singularity $1/|E|$ from infinite resonant peaks in the low-energy regime induced by the defect. Our finding shows that the peak shall be viewed as a collective phenomenon rather than a single impurity state in previous studies.
Intrinsic defects give rise to scattering processes governing the transport properties of mesoscopic systems. We investigate analytically and numerically the local density of states in Bernal stacking bilayer graphene with a point defect. With Bernal stacking structure, there are two types of lattice sites. One corresponds to connected sites, where carbon atoms from each layer stack on top of each other, and the other corresponds to disconnected sites. From our theoretical study, a picture emerges in which the pronounced zero-energy peak in the local density of states does not attribute to zero-energy impurity states associated to two different types of defects but to a collective phenomenon of the low-energy resonant states induced by the defect. To corroborate this description, we numerically show that at small system size $N$, where $N$ is the number of unit cells, the zero-energy peak near the defect scales as $1/ln N$ for the quasi-localized zero-energy state and as $1/N$ for the delocalized zero-energy state. As the system size approaches to the thermodynamic limit, the former zero-energy peak becomes a power-law singularity $1/|E|$ in low energies, while the latter is broadened into a Lorentzian shape. A striking point is that both types of zero-energy peaks decay as $1/r^2$ away from the defect, manifesting the quasi-localized character. Based on our results, we propose a general formula for the local density of states in low-energy and in real space. Our study sheds light on this fundamental problem of defects.
Quasi-free standing epitaxial graphene is obtained on SiC(0001) by hydrogen intercalation. The hydrogen moves between the 6root3 reconstructed initial carbon layer and the SiC substrate. The topmost Si atoms which for epitaxial graphene are covalentl y bound to this buffer layer, are now saturated by hydrogen bonds. The buffer layer is turned into a quasi-free standing graphene monolayer with its typical linear pi-bands. Similarly, epitaxial monolayer graphene turns into a decoupled bilayer. The intercalation is stable in air and can be reversed by annealing to around 900 degrees Celsius.
We investigate the magnetotransport properties of quasi-free standing epitaxial graphene bilayer on SiC, grown by atmospheric pressure graphitization in Ar, followed by H$_2$ intercalation. At the charge neutrality point the longitudinal resistance s hows an insulating behavior, which follows a temperature dependence consistent with variable range hopping transport in a gapped state. In a perpendicular magnetic field, we observe quantum Hall states (QHSs) both at filling factors ($ u$) multiple of four ($ u=4, 8, 12$), as well as broken valley symmetry QHSs at $ u=0$ and $ u=6$. These results unambiguously show that the quasi-free standing graphene bilayer grown on the Si-face of SiC exhibits Bernal stacking.
The magnetization dynamics induced by standing elastic waves excited in a thin ferromagnetic film is described with the aid of micromagnetic simulations taking into account the magnetoelastic coupling between spins and lattice strains. The simulation s have been performed for the 2 nm thick Fe81Ga19 film dynamically strained by longitudinal and transverse standing waves with various frequencies, which span a wide range around the resonance frequency nu_res of coherent magnetization precession in unstrained Fe81Ga19 film. It is found that standing elastic waves give rise to complex local magnetization dynamics and spatially inhomogeneous dynamic magnetic patterns. The spatio-temporal distributions of the magnetization oscillations in standing elastic waves have the form of standing spin waves with the same wavelength. Remarkably, the amplitude of magnetization precession does not go to zero at the nodes of these spin waves, which cannot be precisely described by simple analytical formulae. In the steady-state regime, the magnetization oscillates with the frequency of elastic wave, except for the case of longitudinal waves with frequencies well below nu_res, where the magnetization precesses with a variable frequency strongly exceeding the wave frequency. The precession amplitude at the antinodes of standing spin waves strongly increases when the frequency of elastic wave becomes close to nu_res. The results obtained for the magnetization dynamics driven by elastic waves are used to calculate the spin current pumped from the dynamically strained ferromagnet into adjacent paramagnetic metal. Importantly, the transverse charge current created by the spin current via the inverse spin Hall effect is high enough to be measured experimentally.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا