ترغب بنشر مسار تعليمي؟ اضغط هنا

Quasi-free Standing Epitaxial Graphene on SiC by Hydrogen Intercalation

124   0   0.0 ( 0 )
 نشر من قبل Christian Riedl
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quasi-free standing epitaxial graphene is obtained on SiC(0001) by hydrogen intercalation. The hydrogen moves between the 6root3 reconstructed initial carbon layer and the SiC substrate. The topmost Si atoms which for epitaxial graphene are covalently bound to this buffer layer, are now saturated by hydrogen bonds. The buffer layer is turned into a quasi-free standing graphene monolayer with its typical linear pi-bands. Similarly, epitaxial monolayer graphene turns into a decoupled bilayer. The intercalation is stable in air and can be reversed by annealing to around 900 degrees Celsius.



قيم البحث

اقرأ أيضاً

We present a study of quasi-free-standing monolayer graphene obtained by intercalation of Au atoms at the interface between the carbon buffer layer (Bu-L) and the silicon-terminated face (0001) of 4H-silicon carbide. Au intercalation is achieved by d eposition of atomically thin Au on the Bu-L followed by annealing at 850 {deg}C in an Argon atmosphere. We explore the intercalation of Au and decoupling of the Bu-L into quasi-free-standing monolayer graphene by surface science characterizations and electron transport in top-gated electronic devices. By gate-dependent magnetotransport we find that the Au-intercalated buffer layer displays all properties of monolayer graphene, namely gate tunable ambipolar transport across the Dirac point, and n- or p-type doping depending on the Au content.
We have measured optical absorption in mid-infrared spectral range on hydrogen intercalated epitaxial graphene grown on silicon face of SiC. We have used attenuated total reflection geometry to enhance absorption related to the surface and SiC/graphe ne interface. The samples of epitaxial graphene have been intercalated in the temperature range of 790 to 1250$^circ$C and compared to the reference samples of hydrogen etched SiC. We have found that although the Si-H bonds form at as low temperatures as 790$^circ$C, the well developed bond order has been reached only for epitaxial graphene intercalated at temperatures exceeding 1000$^circ$C. We also show that the hydrogen intercalation degradates on a time scale of few days when samples are stored in ambient air. The optical spectroscopy shows on a formation of vinyl and silyl functional groups on the SiC/graphene interface due to the residual atomic hydrogen left from the intercalation process.
180 - F. Speck , J. Jobst , F. Fromm 2011
We report on an investigation of quasi-free-standing graphene on 6H-SiC(0001) which was prepared by intercalation of hydrogen under the buffer layer. Using infrared absorption spectroscopy we prove that the SiC(0001) surface is saturated with hydroge n. Raman spectra demonstrate the conversion of the buffer layer into graphene which exhibits a slight tensile strain and short range defects. The layers are hole doped (p = 5.0-6.5 x 10^12 cm^(-2)) with a carrier mobility of 3,100 cm^2/Vs at room temperature. Compared to graphene on the buffer layer a strongly reduced temperature dependence of the mobility is observed for graphene on H-terminated SiC(0001)which justifies the term quasi-free-standing.
We investigate the magnetotransport properties of quasi-free standing epitaxial graphene bilayer on SiC, grown by atmospheric pressure graphitization in Ar, followed by H$_2$ intercalation. At the charge neutrality point the longitudinal resistance s hows an insulating behavior, which follows a temperature dependence consistent with variable range hopping transport in a gapped state. In a perpendicular magnetic field, we observe quantum Hall states (QHSs) both at filling factors ($ u$) multiple of four ($ u=4, 8, 12$), as well as broken valley symmetry QHSs at $ u=0$ and $ u=6$. These results unambiguously show that the quasi-free standing graphene bilayer grown on the Si-face of SiC exhibits Bernal stacking.
An in vacuo thermal desorption process has been accomplished to form epitaxial graphene (EG) on 4H- and 6H-SiC substrates using a commercial chemical vapor deposition reactor. Correlation of growth conditions and the morphology and electrical propert ies of EG are described. Raman spectra of EG on Si-face samples were dominated by monolayer thickness. This approach was used to grow EG on 50 mm SiC wafers that were subsequently fabricated into field effect transistors with fmax of 14 GHz.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا