ترغب بنشر مسار تعليمي؟ اضغط هنا

Transverse spin relaxation time in organic molecules: A possible platform for fault tolerant room temperature quantum computing

189   0   0.0 ( 0 )
 نشر من قبل Supriyo Bandyopadhyay
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report measurement of the ensemble averaged transverse spin relaxation time (T2*) in bulk and few molecules of the organic semiconductor tris(8-hydroxyquinolinolato aluminum) or Alq3. This system exhibits two characteristic T2* times, the longer of which is temperature-independent and the shorter is temperature-dependent, indicating that the latter is most likely limited by spin-phonon interaction. Based on the measured data, we infer that the single particle T2 time is long enough to meet Knills criterion for fault tolerant quantum computing, even at room temperature. Alq3 is also an optically active organic and we propose a simple optical scheme for spin qubit read out. Moreover, we found that the temperature-dependent T2* time is considerably shorter in bulk Alq3 powder than in few molecules confined in 1-2 nm sized cavities, which is suggestive of a new type of ``phonon bottleneck effect. This is very intriguing for organic molecules where carriers are always localized over individual molecules but the phonons are delocalized.

قيم البحث

اقرأ أيضاً

Fault-tolerant quantum operation is a key requirement for the development of quantum computing. This has been realized in various solid-state systems including isotopically purified silicon which provides a nuclear spin free environment for the qubit s, but not in industry standard natural (unpurified) silicon. Here we demonstrate an addressable fault-tolerant qubit using a natural silicon double quantum dot with a micromagnet optimally designed for fast spin control. This optimized design allows us to achieve the optimum Rabi oscillation quality factor Q = 140 at a Rabi frequency of 10 MHz in the frequency range two orders of magnitude higher than that achieved in previous studies. This leads to a qubit fidelity of 99.6 %, which is the highest reported for natural silicon qubits and comparable to that obtained in isotopically purified silicon quantum-dot-based qubits. This result can inspire contributions from the industrial and quantum computing communities.
Interacting Bosons, loaded in artificial lattices, have emerged as a modern platform to explore collective manybody phenomena, quantum phase transitions and exotic phases of matter as well as to enable advanced on chip simulators. Such experiments st rongly rely on well-defined shaping the potential landscape of the Bosons, respectively Bosonic quasi-particles, and have been restricted to cryogenic, or even ultra-cold temperatures. On chip, the GaAs-based exciton-polariton platform emerged as a promising system to implement and study bosonic non-linear systems in lattices, yet demanding cryogenic temperatures. In our work, we discuss the first experiment conducted on a polaritonic lattice at ambient conditions: We utilize fluorescent proteins as an excitonic gain material, providing ultra-stable Frenkel excitons. We directly take advantage of their soft nature by mechanically shaping them in the photonic one-dimensional lattice. We demonstrate controlled loading of the condensate in distinct orbital lattice modes of different symmetries, and finally explore, as an illustrative example, the formation of a gap solitonic mode, driven by the interplay of effective interaction and negative effective mass in our lattice. The observed phenomena in our open dissipative system are comprehensively scrutinized by a nonequilibrium model of polariton condensation. We believe, that this work is establishing the organic polariton platform as a serious contender to the well-established GaAs platform for a wide range of applications relying on coherent Bosons in lattices, given its unprecedented flexibility, cost effectiveness and operation temperature.
Quantum computation promises significant computational advantages over classical computation for some problems. However, quantum hardware suffers from much higher error rates than in classical hardware. As a result, extensive quantum error correction is required to execute a useful quantum algorithm. The decoder is a key component of the error correction scheme whose role is to identify errors faster than they accumulate in the quantum computer and that must be implemented with minimum hardware resources in order to scale to the regime of practical applications. In this work, we consider surface code error correction, which is the most popular family of error correcting codes for quantum computing, and we design a decoder micro-architecture for the Union-Find decoding algorithm. We propose a three-stage fully pipelined hardware implementation of the decoder that significantly speeds up the decoder. Then, we optimize the amount of decoding hardware required to perform error correction simultaneously over all the logical qubits of the quantum computer. By sharing resources between logical qubits, we obtain a 67% reduction of the number of hardware units and the memory capacity is reduced by 70%. Moreover, we reduce the bandwidth required for the decoding process by a factor at least 30x using low-overhead compression algorithms. Finally, we provide numerical evidence that our optimized micro-architecture can be executed fast enough to correct errors in a quantum computer.
We report on the first systematic study of spin transport in bilayer graphene (BLG) as a function of mobility, minimum conductivity, charge density and temperature. The spin relaxation time $tau_s$ scales inversely with the mobility $mu$ of BLG sampl es both at room temperature and at low temperature. This indicates the importance of Dyakonov - Perel spin scattering in BLG. Spin relaxation times of up to 2 ns are observed in samples with the lowest mobility. These times are an order of magnitude longer than any values previously reported for single layer graphene (SLG). We discuss the role of intrinsic and extrinsic factors that could lead to the dominance of Dyakonov-Perel spin scattering in BLG. In comparison to SLG, significant changes in the density dependence of $tau_s$ are observed as a function of temperature.
We analyze the latency of fault-tolerant quantum computing based on the 9-qubit Bacon-Shor code using a local, two-dimensional architecture. We embed the data qubits in a 7 by 7 array of physical qubits, where the extra qubits are used for ancilla pr eparation and qubit transportation by means of a SWAP chain. The latency is reduced with respect to a similar implementation using Steanes 7-qubit code (K. M. Svore, D. P. DiVincenzo, and B. M. Terhal, Quantum Information & Computation {bf 7}, 297 (2007)). Furthermore, the error threshold is also improved to $2.02 times 10^{-5}$, when memory errors are taken to be one tenth of the gate error rates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا