ترغب بنشر مسار تعليمي؟ اضغط هنا

S-matrix and Quantum Tunneling in Gravitational Collapse

207   0   0.0 ( 0 )
 نشر من قبل Colferai Dimitri
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the recently introduced ACV reduced-action approach to transplanckian scattering of light particles, we show that the $S$-matrix in the region of classical gravitational collapse is related to a tunneling amplitude in an effective field space. We understand in this way the role of both real and complex field solutions, the choice of the physical ones, the absorption of the elastic channel associated to inelastic multigraviton production and the occurrence of extra absorption below the critical impact parameter. We are also able to compute a class of quantum corrections to the original semiclassical $S$-matrix that we argue to be qualitatively sensible and which, generally speaking, tend to smooth out the semiclassical results.

قيم البحث

اقرأ أيضاً

139 - M. Ciafaloni , D. Colferai 2009
Starting from the semiclassical reduced-action approach to transplanckian scattering by Amati, Veneziano and one of us and from our previous quantum extension of that model, we investigate the S-matrix expression for inelastic processes by extending to this case the tunneling features previously found in the region of classical gravitational collapse. The resulting model exhibits some non-unitary S-matrix eigenvalues for impact parameters b < b_c, a critical value of the order of the gravitational radius R = 2 G sqrt(s), thus showing that some (inelastic) unitarity defect is generally present, and can be studied quantitatively. We find that S-matrix unitarity for b < b_c is restored only if the rapidity phase-space parameter y is allowed to take values larger than the effective coupling G s / hbar itself. Some features of the resulting unitary model are discussed.
Extending our previous results on trans-Planckian ($Gs gg hbar$) scattering of light particles in quantum string-gravity we present a calculation of the corresponding S-matrix from the region of large impact parameters ($b gg Gsqrt{s}>lambda_s$) down to the regime where classical gravitational collapse is expected to occur. By solving the semiclassical equations of a previously introduced effective-action approximation, we find that the perturbative expansion around the leading eikonal result diverges at a critical value $b = b_c = O(Gsqrt{s})$, signalling the onset of a new (black-hole related?) regime. We then discuss the main features of our explicitly unitary S-matrix -- and of the associated effective metric -- down to (and in the vicinity of) $b = b_c$, and present some ideas and results on its extension all the way to the $ b to 0$ region. We find that for $b<b_c$ the physical field solutions are complex-valued and the S-matrix shows additional absorption, related to a new production mechanism. The field solutions themselves are, surprisingly, everywhere regular, suggesting a quantum-tunneling -- rather than a singular-geometry -- situation.
67 - Varun Vaidya 2014
We utilize generalized unitarity and recursion relations combined with effective field theory(EFT) techniques to compute spin dependent interaction terms for inspiralling binary systems in the post newtonian(PN) approximation. Using these methods off ers great computational advantage over traditional techniques involving feynman diagrams, especially at higher orders in the PN expansion. As a specific example, we reproduce the spin-orbit interaction up to 2.5 PN order as also the leading order $S^2$(3PN) hamiltonian for an arbitrary massive object. We also obtain the unknown $S^3$(3.5PN) spin hamiltonian for an arbitrary massive object in terms of its low frequency linear response to gravitational perturbations, which was till now known only for a black hole. Furthermore, we derive the missing $S^4$ Hamiltonian at leading order(4PN) for an arbitrary massive object and establish that a minimal coupling of a massive elementary particle to gravity leads to a black hole structure. Finally, the Kerr metric is obtained as a series in $G_N$ by comparing the action of a test particle in the vicinity of a spinning black hole to the derived potential.
We analyse the double-discontinuities of the four-point correlator of the stress-tensor multiplet in N=4 SYM at large t Hooft coupling and at order $1/N^4$, as a way to access one-loop effects in the dual supergravity theory. From these singularities we extract CFT-data by using two inversion procedures: one based on a recently proposed Froissart-Gribov inversion integral, and the other based on large spin perturbation theory. Both procedures lead to the same results and are shown to be equivalent more generally. Our computation parallels the standard S-matrix reconstruction via dispersion relations. In a suitable limit, the result of the conformal field theory calculation is compared with the one-loop graviton scattering amplitude in ten-dimensional IIB supergravity in flat space, finding perfect agreement.
We analyze the pentagon transitions involving arbitrarily many flux-tube gluonic excitations and bound states thereof in planar N=4 Super-Yang-Mills theory. We derive all-loop expressions for all these transitions by factorization and fusion of the e lementary transitions for the lightest gluonic excitations conjectured in a previous paper. We apply the proposals so obtained to the computation of MHV and NMHV scattering amplitudes at any loop order and find perfect agreement with available perturbative data up to four loops.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا