ﻻ يوجد ملخص باللغة العربية
We utilize generalized unitarity and recursion relations combined with effective field theory(EFT) techniques to compute spin dependent interaction terms for inspiralling binary systems in the post newtonian(PN) approximation. Using these methods offers great computational advantage over traditional techniques involving feynman diagrams, especially at higher orders in the PN expansion. As a specific example, we reproduce the spin-orbit interaction up to 2.5 PN order as also the leading order $S^2$(3PN) hamiltonian for an arbitrary massive object. We also obtain the unknown $S^3$(3.5PN) spin hamiltonian for an arbitrary massive object in terms of its low frequency linear response to gravitational perturbations, which was till now known only for a black hole. Furthermore, we derive the missing $S^4$ Hamiltonian at leading order(4PN) for an arbitrary massive object and establish that a minimal coupling of a massive elementary particle to gravity leads to a black hole structure. Finally, the Kerr metric is obtained as a series in $G_N$ by comparing the action of a test particle in the vicinity of a spinning black hole to the derived potential.
We analyse the double-discontinuities of the four-point correlator of the stress-tensor multiplet in N=4 SYM at large t Hooft coupling and at order $1/N^4$, as a way to access one-loop effects in the dual supergravity theory. From these singularities
We show that in the quadratic curvature theory of gravity, or simply $R_{mu u} ^2$ gravity, the tree-level unitariy bound (tree unitarity) is violated in the UV region but an analog for $S$-matrix unitarity ($SS^{dagger} = 1$) is satisfied. This the
Twisted quantum field theories on the Groenewold-Moyal plane are known to be non-local. Despite this non-locality, it is possible to define a generalized notion of causality. We show that interacting quantum field theories that involve only couplings
The bulk point singularity limit of conformal correlation functions in Lorentzian signature acts as a microscope to look into local bulk physics in AdS. From it we can extract flat space scattering processes localized in AdS that ultimate should be r
The infrared behavior of perturbative quantum gravity is studied using the method developed for QED by Faddeev and Kulish. The operator describing the asymptotic dynamics is derived and used to construct an IR-finite S matrix and space of asymptotic