ﻻ يوجد ملخص باللغة العربية
In this dissertation, I present a general method for studying quantum error correction codes (QECCs). This method not only provides us an intuitive way of understanding QECCs, but also leads to several extensions of standard QECCs, including the operator quantum error correction (OQECC), the entanglement-assisted quantum error correction (EAQECC). Furthermore, we can combine both OQECC and EAQECC into a unified formalism, the entanglement-assisted operator formalism. This provides great flexibility of designing QECCs for different applications. Finally, I show that the performance of quantum low-density parity-check codes will be largely improved using entanglement-assisted formalism.
We show how to protect a stream of quantum information from decoherence induced by a noisy quantum communication channel. We exploit preshared entanglement and a convolutional coding structure to develop a theory of entanglement-assisted quantum conv
We provide several formulas that determine the optimal number of entangled bits (ebits) that a general entanglement-assisted quantum code requires. Our first theorem gives a formula that applies to an arbitrary entanglement-assisted block code. Corol
Quantum error-correcting codes will be the ultimate enabler of a future quantum computing or quantum communication device. This theory forms the cornerstone of practical quantum information theory. We provide several contributions to the theory of qu
We study zero-error entanglement assisted source-channel coding (communication in the presence of side information). Adapting a technique of Beigi, we show that such coding requires existence of a set of vectors satisfying orthogonality conditions re
Large weak values have been used to amplify the sensitivity of a linear response signal for detecting changes in a small parameter, which has also enabled a simple method for precise parameter estimation. However, producing a large weak value require