ﻻ يوجد ملخص باللغة العربية
We study zero-error entanglement assisted source-channel coding (communication in the presence of side information). Adapting a technique of Beigi, we show that such coding requires existence of a set of vectors satisfying orthogonality conditions related to suitably defined graphs $G$ and $H$. Such vectors exist if and only if $vartheta(overline{G}) le vartheta(overline{H})$ where $vartheta$ represents the Lovasz number. We also obtain similar inequalities for the related Schrijver $vartheta^-$ and Szegedy $vartheta^+$ numbers. These inequalities reproduce several known bounds and also lead to new results. We provide a lower bound on the entanglement assisted cost rate. We show that the entanglement assisted independence number is bounded by the Schrijver number: $alpha^*(G) le vartheta^-(G)$. Therefore, we are able to disprove the conjecture that the one-shot entanglement-assisted zero-error capacity is equal to the integer part of the Lovasz number. Beigi introduced a quantity $beta$ as an upper bound on $alpha^*$ and posed the question of whether $beta(G) = lfloor vartheta(G) rfloor$. We answer this in the affirmative and show that a related quantity is equal to $lceil vartheta(G) rceil$. We show that a quantity $chi_{textrm{vect}}(G)$ recently introduced in the context of Tsirelsons conjecture is equal to $lceil vartheta^+(overline{G}) rceil$. In an appendix we investigate multiplicativity properties of Schrijvers and Szegedys numbers, as well as projective rank.
In this dissertation, I present a general method for studying quantum error correction codes (QECCs). This method not only provides us an intuitive way of understanding QECCs, but also leads to several extensions of standard QECCs, including the oper
We show how to protect a stream of quantum information from decoherence induced by a noisy quantum communication channel. We exploit preshared entanglement and a convolutional coding structure to develop a theory of entanglement-assisted quantum conv
We provide several formulas that determine the optimal number of entangled bits (ebits) that a general entanglement-assisted quantum code requires. Our first theorem gives a formula that applies to an arbitrary entanglement-assisted block code. Corol
We introduce two generalizations of Kochen-Specker (KS) sets: projective KS sets and generalized KS sets. We then use projective KS sets to characterize all graphs for which the chromatic number is strictly larger than the quantum chromatic number. H
This paper provides upper and lower bounds on the optimal guessing moments of a random variable taking values on a finite set when side information may be available. These moments quantify the number of guesses required for correctly identifying the