ترغب بنشر مسار تعليمي؟ اضغط هنا

Parametrizing fluids in canonical quantum gravity

37   0   0.0 ( 0 )
 نشر من قبل Simone Zonetti
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Giovanni Montani




اسأل ChatGPT حول البحث

The problem of time is an unsolved issue of canonical General Relativity. A possible solution is the Brown-Kuchar mechanism which couples matter to the gravitational field and recovers a physical, i.e. non vanishing, observable Hamiltonian functional by manipulating the set of constraints. Two cases are analyzed. A generalized scalar fluid model provides an evolutionary picture, but only in a singular case. The Schutz model provides an interesting singularity free result: the entropy per baryon enters the definition of the physical Hamiltonian. Moreover in the co-moving frame one is able to identify the time variable tau with the logarithm of entropy.

قيم البحث

اقرأ أيضاً

95 - R. De Pietri 1999
The canonical ``loop formulation of quantum gravity is a mathematically well defined, background independent, non perturbative standard quantization of Einsteins theory of General Relativity. Some among the most meaningful results of the theory are: 1) the complete calculation of the spectrum of geometric quantities like the area and the volume and the consequent physical predictions about the structure of the space-time at the Plank scale; 2) a microscopical derivation of the Bekenstein-Hawking black-hole entropy formula. Unfortunately, despite recent results, the dynamical aspect of the theory (imposition of the Wheller-De Witt constraint) remains elusive. After a short description of the basic ideas and the main results of loop quantum gravity we show in which sence the exponential of the super Hamiltonian constraint leads to the concept of spin foam and to a four dimensional formulation of the theory. Moreover, we show that some topological field theories as the BF theory in 3 and 4 dimension admits a spin foam formulation. We argue that the spin-foams/spin-networks formalism it is the natural framework to discuss loop quantum gravity and topological field theory.
We study the canonical structure of the topological 3D gravity with torsion, assuming the anti-de Sitter asymptotic conditions. It is shown that the Poisson bracket algebra of the canonical generators has the form of two independent Virasoro algebras with classical central charges. In contrast to the case of general relativity with a cosmological constant, the values of the central charges are different from each other.
The Brown-Kuchar mechanism is applied in the case of General Relativity coupled with the Schutz model for a perfect fluid. Using the canonical formalism and manipulating the set of modified constraints one is able to recover the definition of a time evolution operator, i.e. a physical Hamiltonian, expressed as a functional of gravitational variables and the entropy.
78 - Stephen R. Lau 1995
In a thorough paper Kuchar has examined the canonical reduction of the most general action functional describing the geometrodynamics of the maximally extended Schwarzschild geometry. This reduction yields the true degrees of freedom for (vacuum) sph erically symmetric general relativity. The essential technical ingredient in Kuchars analysis is a canonical transformation to a certain chart on the gravitational phase space which features the Schwarzschild mass parameter $M_{S}$, expressed in terms of what are essentially Arnowitt-Deser-Misner variables, as a canonical coordinate. In this paper we discuss the geometric interpretation of Kuchars canonical transformation in terms of the theory of quasilocal energy-momentum in general relativity given by Brown and York. We find Kuchars transformation to be a ``sphere-dependent boost to the rest frame, where the ``rest frame is defined by vanishing quasilocal momentum. Furthermore, our formalism is general enough to cover the case of (vacuum) two-dimensional dilaton gravity. Therefore, besides reviewing Kuchav{r}s original work for Schwarzschild black holes from the framework of hyperbolic geometry, we present new results concerning the canonical reduction of Witten-black-hole geometrodynamics.
A detailed Gitman-Lyakhovich-Tyutin analysis for higher-order topologically massive gravity is performed. The full structure of the constraints, the counting of physical degrees of freedom, and the Dirac algebra among the constraints are reported. Mo reover, our analysis presents a new structure of the constraints and we compare our results with those reported in the literature where a standard Ostrogradski framework was developed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا