ﻻ يوجد ملخص باللغة العربية
We study the canonical structure of the topological 3D gravity with torsion, assuming the anti-de Sitter asymptotic conditions. It is shown that the Poisson bracket algebra of the canonical generators has the form of two independent Virasoro algebras with classical central charges. In contrast to the case of general relativity with a cosmological constant, the values of the central charges are different from each other.
We study the structure of asymptotic symmetries in N=1+1 supersymmetric extension of three-dimensional gravity with torsion. Using a natural generalization of the bosonic anti-de Sitter asymptotic conditions, we show that the asymptotic Poisson brack
We discuss some new developments in three-dimensional gravity with torsion, based on Riemann-Cartan geometry. Using the canonical approach, we study the structure of asymptotic symmetry, clarify its fundamental role in defining the gravitational cons
The role of torsion in quantum three-dimensional gravity is investigated by studying the partition function of the Euclidean theory in Riemann-Cartan spacetime. The entropy of the black hole with torsion is found to differ from the standard Bekenstei
Asymptotic symmetry of the Euclidean 3D gravity with torsion is described by two independent Virasoro algebras with different central charges. Elements of this boundary conformal structure are combined with Cardys formula to calculate the black hole entropy.
We study the Hamiltonian structure of the general parity-invariant model of three-dimensional gravity with propagating torsion, with eight parameters in the Lagrangian. In the scalar sector, containing scalar or pseudoscalar modes with respect to max