ترغب بنشر مسار تعليمي؟ اضغط هنا

Large temperature dependence of the Casimir force at the metal-insulator transition

90   0   0.0 ( 0 )
 نشر من قبل Savel'ev Sergey
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The dependence of the Casimir force on material properties is important for both future applications and to gain further insight on its fundamental aspects. Here we derive a general theory of the Casimir force for low-conducting compounds, or poor metals. For distances in the micrometer range, a large variety of such materials is described by universal equations containing a few parameters: the effective plasma frequency, dissipation rate of the free carriers, and electric permittivity in the infrared range. This theory can also describe inhomogeneous composite materials containing small regions with different conductivity. The Casimir force for mechanical systems involving samples made with compounds that have a metal-insulator transition shows an abrupt large temperature dependence of the Casimir force within the transition region, where metallic and dielectric phases coexist.

قيم البحث

اقرأ أيضاً

The correlation-driven Mott transition is commonly characterized by a drop in resistivity across the insulator-metal phase boundary; yet, the complex permittivity provides a deeper insight into the microscopic nature. We investigate the frequency- an d temperature-dependent dielectric response of the Mott insulator $kappa$-(BEDT-TTF)$_{2}$-Cu$_2$(CN)$_3$ when tuning from a quantum spin liquid into the Fermi-liquid state by applying external pressure and chemical substitution of the donor molecules. At low temperatures the coexistence region at the first-order transition leads to a strong enhancement of the quasi-static dielectric constant $epsilon_1$ when the effective correlations are tuned through the critical value. Several dynamical regimes are identified around the Mott point and vividly mapped through pronounced permittivity crossovers. All experimental trends are captured by dynamical mean-field theory of the single-band Hubbard model supplemented by percolation theory.
We report on the first measurement of a temperature dependence of the Casimir-Polder force. This measurement was obtained by positioning a nearly pure 87-Rb Bose-Einstein condensate a few microns from a dielectric substrate and exciting its dipole os cillation. Changes in the collective oscillation frequency of the magnetically trapped atoms result from spatial variations in the surface-atom force. In our experiment, the dielectric substrate is heated up to 605 K, while the surrounding environment is kept near room temperature (310 K). The effect of the Casimir-Polder force is measured to be nearly 3 times larger for a 605 K substrate than for a room-temperature substrate, showing a clear temperature dependence in agreement with theory.
The Fowler-Nordheim tunneling current formula has been widely used in the design of devices based on metal/insulator (metal/semiconductor) heterojunctions with triangle potential barriers, such as the flash memory. Here we adopt the model that was us ed to derive the Landauer formula at finite temperature, the nearly-free electron approximation to describe the electronic states in semi-infinite metal electrode and the Wentzel-Kramers-Brillouin (WKB) approximation to describe the transmission coefficient, and derive a tunneling current formula for metal/insulator heterojunctions under large bias and electric field. In contrast to the Fowler-Nordheim formula which is the limit at zero temperature, our formula is generalized to the finite temperature (with the thermal excitation of electrons in metal electrode considered) and the potential barriers beyond triangle ones, which may be used for the design of more complicated heterojunction devices based on the carrier tunneling.
Soft x-ray spectroscopy is used to investigate the strain dependence of the metal-insulator transition of VO2. Changes in the strength of the V 3d - O 2p hybridization are observed across the transition, and are linked to the structural distortion. F urthermore, although the V-V dimerization is well-described by dynamical mean-field theory, the V-O hybridization is found to have an unexpectedly strong dependence on strain that is not predicted by band theory, emphasizing the relevance of the O ion to the physics of VO2.
A method for the study of the electronic transport in strongly coupled electron-phonon systems is formalized and applied to a model of polyyne chains biased through metallic Au leads. We derive a stationary non equilibrium polaronic theory in the gen eral framework of a variational formulation. The numerical procedure we propose can be readily applied if the electron-phonon interaction in the device hamiltonian can be approximated as an effective single particle electron hamiltonian. Using this approach, we predict that finite polyyne chains should manifest an insulator-metal transition driven by the non-equilibrium charging which inhibits the Peierls instability characterizing the equilibrium state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا