ترغب بنشر مسار تعليمي؟ اضغط هنا

A Super-high Angular Resolution Principle for Coded-mask X-ray Imaging Beyond the Diffraction Limit of Single Pinhole

11   0   0.0 ( 0 )
 نشر من قبل Chen Zhang
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High angular resolution X-ray imaging is always demanded by astrophysics and solar physics, which can be realized by coded-mask imaging with very long mask-detector distance in principle. Previously the diffraction-interference effect has been thought to degrade coded-mask imaging performance dramatically at low energy end with very long mask-detector distance. In this work the diffraction-interference effect is described with numerical calculations, and the diffraction-interference cross correlation reconstruction method (DICC) is developed in order to overcome the imaging performance degradation. Based on the DICC, a super-high angular resolution principle (SHARP) for coded-mask X-ray imaging is proposed. The feasibility of coded mask imaging beyond the diffraction limit of single pinhole is demonstrated with simulations. With the specification that the mask element size of 50* 50 square micrometers and the mask-detector distance of 50 m, the achieved angular resolution is 0.32 arcsec above about 10 keV, and 0.36 arcsec at 1.24 keV where diffraction can not be neglected. The on-axis source location accuracy is better than 0.02 arcsec. Potential applications for solar observations and wide-field X-ray monitors are also shortly discussed.

قيم البحث

اقرأ أيضاً

33 - A. Goldwurm 2001
The IBIS telescope onboard INTEGRAL, the ESA gamma-ray space mission to be launched in 2002, is a soft gamma-ray (20 keV - 10 MeV) device based on a coded aperture imaging system. We describe here basic concepts of coded masks, the imaging system of the IBIS telescope, and the standard data analysis procedures to reconstruct sky images. This analysis includes, for both the low-energy detector layer (ISGRI) and the high energy layer (PICSIT), iterative procedures which decode recorded shadowgrams, search for and locate sources, clean for secondary lobes, and then rotate and compose sky images. These procedures will be implemented in the Quick Look and Standard Analysis of the INTEGRAL Science Data Center (ISDC) as IBIS Instrument Specific Software.
Wide-field (> 100 deg$^2$) hard X-ray coded-aperture telescopes with high angular resolution (< 2) will enable a wide range of time domain astrophysics. For instance, transient sources such as gamma-ray bursts can be precisely localized without assis tance of secondary focusing X-ray telescopes to enable rapid followup studies. On the other hand, high angular resolution in coded-aperture imaging introduces a new challenge in handling the systematic uncertainty: average photon count per pixel is often too small to establish a proper background pattern or model the systematic uncertainty in a time scale where the model remains invariant. We introduce two new techniques to improve detection sensitivity, which are designed for, but not limited to high resolution coded-aperture system: a self-background modeling scheme which utilizes continuous scan or dithering operations, and a Poisson-statistics based probabilistic approach to evaluate the significance of source detection without subtraction in handling the background. We illustrate these new imaging analysis techniques in high resolution coded-aperture telescope using the data acquired by the wide-field hard X-ray telescope ProtoEXIST2 during the high-altitude balloon flight in Fall, 2012. We review the imaging sensitivity of ProtoEXIST2 during the flight, and demonstrate the performance of the new techniques using our balloon flight data in comparison with simulated ideal Poisson background.
We study the possibility of creating spatial patterns having subwavelength size by using the so-called dark states formed by the interaction between atoms and optical fields. These optical fields have a specified spatial distribution. Our experiments in Rb vapor display spatial patterns that are smaller than the length determined by the diffraction limit of the optical system used in the experiment. This approach may have applications to interference lithography and might be used in coherent Raman spectroscopy to create patterns with subwavelength spatial resolution.
Galaxy clusters are massive dark matter-dominated systems filled with X-ray emitting, optically thin plasma. Their large size and relative simplicity (at least as astrophysical objects go) make them a unique laboratory to measure some of the interest ing plasma properties that are inaccessible by other means but fundamentally important for understanding and modeling many astrophysical phenomena -- from solar flares to black hole accretion to galaxy formation and the emergence of the cosmological Large Scale Structure. While every cluster astrophysicist is eagerly anticipating the direct gas velocity measurements from the forthcoming microcalorimeters onboard XRISM, Athena and future missions such as Lynx, a number of those plasma properties can best be probed by high-resolution X-ray imaging of galaxy clusters. Chandra has obtained some trailblazing results, but only grazed the surface of such studies. In this white paper, we discuss why we need arcsecond-resolution, high collecting area, low relative background X-ray imagers (with modest spectral resolution), such as the proposed AXIS and the imaging detector of Lynx.
An outstanding question in X-ray single particle imaging experiments has been the feasibility of imaging sub 10-nm-sized biomolecules under realistic experimental conditions where very few photons are expected to be measured in a single snapshot and instrument background may be significant relative to particle scattering. While analyses of simulated data have shown that the determination of an average image should be feasible using Bayesian methods such as the EMC algorithm, this has yet to be demonstrated using experimental data containing realistic non-isotropic instrument background, sample variability and other experimental factors. In this work, we show that the orientation and phase retrieval steps work at photon counts diluted to the signal levels one expects from smaller molecules or with weaker pulses, using data from experimental measurements of 60-nm PR772 viruses. Even when the signal is reduced to a fraction as little as 1/256, the virus electron density determined using ab initio phasing is of almost the same quality as the high-signal data. However, we are still limited by the total number of patterns collected, which may soon be mitigated by the advent of high repetition-rate sources like the European XFEL and LCLS-II.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا