ﻻ يوجد ملخص باللغة العربية
When both two-electron textit{and} two-hole Cooper-pairing are treated on an equal footing in the ladder approximation to the Bethe-Salpeter (BS) equation, the zero-total-momentum Cooper-pair energy is found to have two textit{real} solutions $mathcal{E}_{0}^{BS}=pm 2hbar omega_{{D}%}/sqrt{{e}^{2/lambda }+{1}}$ which coincide with the zero-temperature BCS energy gap $Delta =hbar omega_{D}/sinh (1/lambda) $ in the weak coupling limit. Here, $hbar omega_{D}$ is the Debye energy and $lambda geq 0$ the BCS model interaction coupling parameter. The interpretation of the BCS energy gap as the binding energy of a Cooper-pair is often claimed in the literature but, to our knowledge, never substantiated even in weak-coupling as we find here. In addition, we confirm the two purely-textit{imaginary} solutions assumed since at least the late 1950s as the textit{only} solutions, namely, $mathcal{E}_{0}^{BS}=pm i2hbar omega_{{D}}/sqrt{{e}^{2/lambda}{-1}}.$
We study the time evolution of a system of fermions with pairing interactions at a finite temperature. The dynamics is triggered by an abrupt increase of the BCS coupling constant. We show that if initially the fermions are in a normal phase, the amp
The Cooper pairing mechanism of heavy-fermion superconductors, while long hypothesized as due to spin fluctuations, has not been determined. It is the momentum space (k-space) structure of the superconducting energy gap delta(k) that encodes specific
We show that Cooper pairing can occur intrinsically away from the Fermi surface in $j=3/2$ superconductors with strong spin-orbit coupling and equally curved bands in the normal state. In contrast to conventional pairing between spin-$1/2$ electrons,
In superconducting ferromagnets for which the Curie temperature $T_{m}$ exceeds the superconducting transition temperature $T_{c}$, it was suggested that ferromagnetic spin fluctuations could lead to superconductivity with p-wave spin triplet Cooper
Thin sheets deposited on a substrate and interfaces of correlated materials offer a plethora of routes towards the realization of exotic phases of matter. In these systems, inversion symmetry is broken which strongly affects the properties of possibl