ﻻ يوجد ملخص باللغة العربية
Plate-like single crystals of SrFe2As2 as large as 3x3x0.5 mm3 have been grown out of Sn flux. The SrFe2As2 single crystals show a structural phase transition from a high temperature tetragonal phase to a low temperature orthorhombic phase at To = 198 K, and do not show any sign of superconductivity down to 1.8 K. The structural transition is accompanied by an anomaly in the electrical resistivity, Hall resistivity, specific heat, and the anisotropic magnetic susceptibility. In an intermediate temperature range from 198 K to 160 K, single crystal X-ray diffraction suggests a coexistence of the high-temperature tetragonal and the low-temperature orthorhombic phases.
The structural properties of the SrFe2As2 and CaFe2As2 compounds have been extensively analyzed by transmission electron microscopy (TEM) from room temperature down to 20K. The experimental results demonstrate that the SrFe2As2 crystal, in consistenc
Single crystalline, single phase CaKFe$_{4}$As$_{4}$ has been grown out of a high temperature, quaternary melt. Temperature dependent measurements of x-ray diffraction, anisotropic electrical resistivity, elastoresistivity, thermoelectric power, Hall
Doped BaCoSO was recently predicted to be a high-temperature superconductor in a new class based on Co and Ni. Using a Co-S self flux method, we synthesized single crystals of the antiferromagnetic insulator BaCoSO. Our magnetic and specific heat mea
We report temperature and thermal-cycling dependence of surface and bulk structures of double-layered perovskite Sr3Ru2O7 single crystals. The surface and bulk structures were investigated using low-energy electron diffraction (LEED) and single-cryst
Single crystals of RbOs2O6 have been grown from Rb2O and Os in sealed quartz ampoules. The crystal structure has been identified at room temperature as cubic with the lattice constant a = 10.1242(12) A. The anisotropy of the tetrahedral and octahedra