ترغب بنشر مسار تعليمي؟ اضغط هنا

Origin of the spin density wave instability in AFe$_2$As$_2$ (A=Ba, Sr) as revealed by optical spectroscopy

127   0   0.0 ( 0 )
 نشر من قبل Nan Lin Wang
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We performed optical spectroscopy measurement on single crystals of BaFe$_2$As$_2$ and SrFe$_2$As$_2$, the parent compounds of FeAs based superconductors. Both are found to be quite metallic with fairly large plasma frequencies at high temperature. Upon entering the spin-density-wave (SDW) state, formation of partial energy gaps was clearly observed with the presence of surprisingly two different energy scales. A large part of the Drude component was removed by the gapping of Fermi surfaces (FS). Meanwhile, the carrier scattering rate was even more dramatically reduced. We elaborate that the SDW instability is more likely to be driven by the FS nesting of itinerant electrons rather than a local-exchange mechanism.



قيم البحث

اقرأ أيضاً

121 - D. Hou , Q. M. Zhang , Z. Y. Lu 2009
From first-principles density functional theory calculations combined with varying temperature Raman experiments, we show that AFe$_2$As$_2$ (A=Ba, Sr), the parent compound of the FeAs based superconductors of the new structural family, undergoes a s pin-Peierls-like phase transition at low temperature. The coupling between the phonons and frustrated spins is proved to be the main cause of the structural transition from the tetragonal to orthorhombic phase. These results well explain the magnetic and structural phase transitions in AFe$_2$As$_2$(A=Ba, Sr) recently observed by neutron scattering.
120 - M. Yi , D. H. Lu , J. G. Analytis 2009
Through a systematic high resolution angle-resolved photoemission study of the iron pnictide compounds (Ba,Sr)Fe$_2$As$_2$, we show that the electronic structures of these compounds are significantly reconstructed across the spin density wave orderin g, which cannot be described by a simple folding scenario of conventional density wave ordering. Moreover, we find that LDA calculations with an incorporated suppressed magnetic moment of 0.5$mu_{tiny{textrm{B}}}$ can match well the details in the reconstructed electronic structure, suggesting that the nature of magnetism in the pnictides is more itinerant than local, while the origin of suppressed magnetic moment remains an important issue for future investigations.
We perform, as a function of uniaxial stress, an optical-reflectivity investigation of the representative parent ferropnictide BaFe$_2$As$_2$ in a broad spectral range, across the tetragonal-to-orthorhombic phase transition and the onset of the long- range antiferromagnetic order (AFM). The infrared response reveals that the $dc$ transport anisotropy in the orthorhombic AFM state is determined by the interplay between the Drude spectral weight and the scattering rate, but that the dominant effect is clearly associated with the metallic spectral weight. In the paramagnetic tetragonal phase, though, the $dc$ resistivity anisotropy of strained samples is almost exclusively due to stress-induced changes in the Drude weight rather than in the scattering rate, definitively establishing the anisotropy of the Fermi surface parameters as the primary effect driving the $dc$ transport properties in the electronic nematic state.
108 - Y.M. Dai , B. Xu , B. Shen 2013
The optical properties of Ba$_{0.6}$K$_{0.4}$Fe$_{2}$As$_{2}$ have been determined in the normal state for a number of temperatures over a wide frequency range. Two Drude terms, representing two groups of carriers with different scattering rates ($1/ tau$), well describe the real part of the optical conductivity, $sigma_{1}(omega)$. A broad Drude component results in an incoherent background with a $T$-independent $1/tau_b$, while a narrow Drude component reveals a $T$-linear $1/tau_n$ resulting in a resistivity $rho_n equiv 1/sigma_{1n}(omegarightarrow 0)$ also linear in temperature. An arctan($T$) low-frequency spectral weight is also a strong evidence for a $T$-linear 1/$tau$. Comparison to other materials with similar behavior suggests that the $T$-linear $1/tau_n$ and $rho_n$ in Ba$_{0.6}$K$_{0.4}$Fe$_{2}$As$_{2}$ originate from scattering from spin fluctuations and hence that an antiferromagnetic quantum critical point is likely to exist in the superconducting dome.
197 - Fengjie Ma , Zhong-Yi Lu , 2010
We have studied the electronic and magnetic structures of the ternary iron arsenides AFe$_2$As$_2$ (A = Ba, Ca, or Sr) using the first-principles density functional theory. The ground states of these compounds are in a collinear antiferromagnetic ord er, resulting from the interplay between the nearest and the next-nearest neighbor superexchange antiferromagnetic interactions bridged by As $4p$ orbitals. The correction from the spin-orbit interaction to the band structure is small. The pressure can reduce dramatically the magnetic moment and diminish the collinear antiferromagnetic order. Based on the calculations, we propose that the low energy dynamics of these materials is described effectively by a $t-J_H-J_1-J_2$-type model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا