ﻻ يوجد ملخص باللغة العربية
We have studied the electronic and magnetic structures of the ternary iron arsenides AFe$_2$As$_2$ (A = Ba, Ca, or Sr) using the first-principles density functional theory. The ground states of these compounds are in a collinear antiferromagnetic order, resulting from the interplay between the nearest and the next-nearest neighbor superexchange antiferromagnetic interactions bridged by As $4p$ orbitals. The correction from the spin-orbit interaction to the band structure is small. The pressure can reduce dramatically the magnetic moment and diminish the collinear antiferromagnetic order. Based on the calculations, we propose that the low energy dynamics of these materials is described effectively by a $t-J_H-J_1-J_2$-type model.
From first-principles density functional theory calculations combined with varying temperature Raman experiments, we show that AFe$_2$As$_2$ (A=Ba, Sr), the parent compound of the FeAs based superconductors of the new structural family, undergoes a s
We discuss the results of $^{75}$As Nuclear Quadrupole Resonance (NQR) and muon spin relaxation measurements in AFe$_2$As$_2$ (A= Cs, Rb) iron-based superconductors. We demonstrate that the crossover detected in the nuclear spin-lattice relaxation ra
We performed optical spectroscopy measurement on single crystals of BaFe$_2$As$_2$ and SrFe$_2$As$_2$, the parent compounds of FeAs based superconductors. Both are found to be quite metallic with fairly large plasma frequencies at high temperature. U
We report measurements of the Hall coefficient $R_H$ for single crystals of AFe$_2$As$_2$ with $A = Ba, Ca$ or $Sr$ which are the anti-ferromagnetic parent compounds of some high temperature pnictide superconductors. We show that $R_H$ of Sr-122 is c
We report high-resolution, bulk Compton scattering measurements unveiling the Fermi surface of an optimally-doped iron-arsenide superconductor, Ba(Fe$_{0.93}$Co$_{0.07}$)$_2$As$_2$. Our measurements are in agreement with first-principles calculations