ترغب بنشر مسار تعليمي؟ اضغط هنا

The Mock LISA Data Challenges: from Challenge 1B to Challenge 3

304   0   0.0 ( 0 )
 نشر من قبل Michele Vallisneri
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Mock LISA Data Challenges are a programme to demonstrate and encourage the development of LISA data-analysis capabilities, tools and techniques. At the time of this workshop, three rounds of challenges had been completed, and the next was about to start. In this article we provide a critical analysis of entries to the latest completed round, Challenge 1B. The entries confirm the consolidation of a range of data-analysis techniques for Galactic and massive--black-hole binaries, and they include the first convincing examples of detection and parameter estimation of extreme--mass-ratio inspiral sources. In this article we also introduce the next round, Challenge 3. Its data sets feature more realistic waveform models (e.g., Galactic binaries may now chirp, and massive--black-hole binaries may precess due to spin interactions), as well as new source classes (bursts from cosmic strings, isotropic stochastic backgrounds) and more complicated nonsymmetric instrument noise.



قيم البحث

اقرأ أيضاً

The Mock LISA Data Challenges are a program to demonstrate LISA data-analysis capabilities and to encourage their development. Each round of challenges consists of one or more datasets containing simulated instrument noise and gravitational waves fro m sources of undisclosed parameters. Participants analyze the datasets and report best-fit solutions for the source parameters. Here we present the results of the third challenge, issued in Apr 2008, which demonstrated the positive recovery of signals from chirping Galactic binaries, from spinning supermassive--black-hole binaries (with optimal SNRs between ~ 10 and 2000), from simultaneous extreme-mass-ratio inspirals (SNRs of 10-50), from cosmic-string-cusp bursts (SNRs of 10-100), and from a relatively loud isotropic background with Omega_gw(f) ~ 10^-11, slightly below the LISA instrument noise.
The Mock LISA Data Challenges are a program to demonstrate LISA data-analysis capabilities and to encourage their development. Each round of challenges consists of several data sets containing simulated instrument noise and gravitational-wave sources of undisclosed parameters. Participants are asked to analyze the data sets and report the maximum information about source parameters. The challenges are being released in rounds of increasing complexity and realism: in this proceeding we present the results of Challenge 2, issued in January 2007, which successfully demonstrated the recovery of signals from supermassive black-hole binaries, from ~20,000 overlapping Galactic white-dwarf binaries, and from the extreme-mass-ratio inspirals of compact objects into central galactic black holes.
We are developing a Bayesian approach based on Markov chain Monte Carlo techniques to search for and extract information about white dwarf binary systems with the Laser Interferometer Space Antenna (LISA). Here we present results obtained by applying an initial implementation of this method to some of the data sets released in Round 1B of the Mock LISA Data Challenges. For Challenges 1B.1.1a and 1b the signals were recovered with parameters lying within the 95.5% posterior probability interval and the correlation between the true and recovered waveform is in excess of 99%. Results were not submitted for Challenge 1B.1.1c due to some convergence problems of the algorithms, despite this, the signal was detected in a search over a 2 mHz band.
147 - John T. Whelan , Reinhard Prix , 2008
We report on our F-statistic search for white-dwarf binary signals in the Mock LISA Data Challenge 1B (MLDC1B). We focus in particular on the improvements in our search pipeline since MLDC1, namely refinements in the search pipeline and the use of a more accurate detector response (rigid adiabatic approximation). The search method employs a hierarchical template-grid based exploration of the parameter space, using a coincidence step to distinguish between primary (``true) and secondary maxima, followed by a final (multi-TDI) ``zoom stage to provide an accurate parameter estimation of the final candidates.
The LISA International Science Team Working Group on Data Analysis (LIST-WG1B) is sponsoring several rounds of mock data challenges, with the purpose of fostering development of LISA data-analysis capabilities, and of demonstrating technical readines s for the maximum science exploitation of the LISA data. The first round of challenge data sets were released at this Symposium. We describe the models and conventions (for LISA and for gravitational-wave sources) used to prepare the data sets, the file format used to encode them, and the tools and resources available to support challenge participants.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا