ترغب بنشر مسار تعليمي؟ اضغط هنا

Markov chain Monte Carlo searches for Galactic binaries in Mock LISA Data Challenge 1B data sets

139   0   0.0 ( 0 )
 نشر من قبل Miquel Trias
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We are developing a Bayesian approach based on Markov chain Monte Carlo techniques to search for and extract information about white dwarf binary systems with the Laser Interferometer Space Antenna (LISA). Here we present results obtained by applying an initial implementation of this method to some of the data sets released in Round 1B of the Mock LISA Data Challenges. For Challenges 1B.1.1a and 1b the signals were recovered with parameters lying within the 95.5% posterior probability interval and the correlation between the true and recovered waveform is in excess of 99%. Results were not submitted for Challenge 1B.1.1c due to some convergence problems of the algorithms, despite this, the signal was detected in a search over a 2 mHz band.

قيم البحث

اقرأ أيضاً

The Mock LISA Data Challenges are a programme to demonstrate and encourage the development of LISA data-analysis capabilities, tools and techniques. At the time of this workshop, three rounds of challenges had been completed, and the next was about t o start. In this article we provide a critical analysis of entries to the latest completed round, Challenge 1B. The entries confirm the consolidation of a range of data-analysis techniques for Galactic and massive--black-hole binaries, and they include the first convincing examples of detection and parameter estimation of extreme--mass-ratio inspiral sources. In this article we also introduce the next round, Challenge 3. Its data sets feature more realistic waveform models (e.g., Galactic binaries may now chirp, and massive--black-hole binaries may precess due to spin interactions), as well as new source classes (bursts from cosmic strings, isotropic stochastic backgrounds) and more complicated nonsymmetric instrument noise.
We report on our F-statistic search for white-dwarf binary signals in the Mock LISA Data Challenge 1B (MLDC1B). We focus in particular on the improvements in our search pipeline since MLDC1, namely refinements in the search pipeline and the use of a more accurate detector response (rigid adiabatic approximation). The search method employs a hierarchical template-grid based exploration of the parameter space, using a coincidence step to distinguish between primary (``true) and secondary maxima, followed by a final (multi-TDI) ``zoom stage to provide an accurate parameter estimation of the final candidates.
The F-statistic is an optimal detection statistic for continuous gravitational waves, i.e., long-duration (quasi-)monochromatic signals with slowly-varying intrinsic frequency. This method was originally developed in the context of ground-based detec tors, but it is equally applicable to LISA where many signals fall into this class of signals. We report on the application of a LIGO/GEO F-statistic code to LISA data-analysis using the long-wavelength limit (LWL), and we present results of our search for white-dwarf binary signals in the first Mock LISA Data Challenge. Somewhat surprisingly, the LWL is found to be sufficient -- even at high frequencies -- for detection of signals and their accurate localization on the sky and in frequency, while a more accurate modelling of the TDI response only seems necessary to correctly estimate the four amplitude parameters.
The Mock LISA Data Challenges are a program to demonstrate LISA data-analysis capabilities and to encourage their development. Each round of challenges consists of several data sets containing simulated instrument noise and gravitational-wave sources of undisclosed parameters. Participants are asked to analyze the data sets and report the maximum information about source parameters. The challenges are being released in rounds of increasing complexity and realism: in this proceeding we present the results of Challenge 2, issued in January 2007, which successfully demonstrated the recovery of signals from supermassive black-hole binaries, from ~20,000 overlapping Galactic white-dwarf binaries, and from the extreme-mass-ratio inspirals of compact objects into central galactic black holes.
The Mock LISA Data Challenges are a program to demonstrate LISA data-analysis capabilities and to encourage their development. Each round of challenges consists of one or more datasets containing simulated instrument noise and gravitational waves fro m sources of undisclosed parameters. Participants analyze the datasets and report best-fit solutions for the source parameters. Here we present the results of the third challenge, issued in Apr 2008, which demonstrated the positive recovery of signals from chirping Galactic binaries, from spinning supermassive--black-hole binaries (with optimal SNRs between ~ 10 and 2000), from simultaneous extreme-mass-ratio inspirals (SNRs of 10-50), from cosmic-string-cusp bursts (SNRs of 10-100), and from a relatively loud isotropic background with Omega_gw(f) ~ 10^-11, slightly below the LISA instrument noise.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا