ﻻ يوجد ملخص باللغة العربية
We are developing a Bayesian approach based on Markov chain Monte Carlo techniques to search for and extract information about white dwarf binary systems with the Laser Interferometer Space Antenna (LISA). Here we present results obtained by applying an initial implementation of this method to some of the data sets released in Round 1B of the Mock LISA Data Challenges. For Challenges 1B.1.1a and 1b the signals were recovered with parameters lying within the 95.5% posterior probability interval and the correlation between the true and recovered waveform is in excess of 99%. Results were not submitted for Challenge 1B.1.1c due to some convergence problems of the algorithms, despite this, the signal was detected in a search over a 2 mHz band.
The Mock LISA Data Challenges are a programme to demonstrate and encourage the development of LISA data-analysis capabilities, tools and techniques. At the time of this workshop, three rounds of challenges had been completed, and the next was about t
We report on our F-statistic search for white-dwarf binary signals in the Mock LISA Data Challenge 1B (MLDC1B). We focus in particular on the improvements in our search pipeline since MLDC1, namely refinements in the search pipeline and the use of a
The F-statistic is an optimal detection statistic for continuous gravitational waves, i.e., long-duration (quasi-)monochromatic signals with slowly-varying intrinsic frequency. This method was originally developed in the context of ground-based detec
The Mock LISA Data Challenges are a program to demonstrate LISA data-analysis capabilities and to encourage their development. Each round of challenges consists of several data sets containing simulated instrument noise and gravitational-wave sources
The Mock LISA Data Challenges are a program to demonstrate LISA data-analysis capabilities and to encourage their development. Each round of challenges consists of one or more datasets containing simulated instrument noise and gravitational waves fro