ترغب بنشر مسار تعليمي؟ اضغط هنا

On the existence of compactly supported reconstruction functions in a sampling problem

200   0   0.0 ( 0 )
 نشر من قبل Antonio G. Garc\\'ia
 تاريخ النشر 2008
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Assume that samples of a filtered version of a function in a shift-invariant space are avalaible. This work deals with the existence of a sampling formula involving these samples and having reconstruction functions with compact support. Thus, low computational complexity is involved and truncation errors are avoided. This is done in the light of the generalized sampling theory by using the oversampling technique: more samples than strictly necessary are used. For a suitable choice of the sampling period, a necessary and sufficient condition is given in terms of the Kronecker canonical form of a matrix pencil. Comparing with other characterizations in the mathematical literature, the given here has an important advantage: it can be reliable computed by using the GUPTRI form of the matrix pencil. Finally, a practical method for computing the compactly supported reconstruction functions is given for the important case where the oversampling rate is minimum.



قيم البحث

اقرأ أيضاً

We study the impact of sampling theorems on the fidelity of sparse image reconstruction on the sphere. We discuss how a reduction in the number of samples required to represent all information content of a band-limited signal acts to improve the fide lity of sparse image reconstruction, through both the dimensionality and sparsity of signals. To demonstrate this result we consider a simple inpainting problem on the sphere and consider images sparse in the magnitude of their gradient. We develop a framework for total variation (TV) inpainting on the sphere, including fast methods to render the inpainting problem computationally feasible at high-resolution. Recently a new sampling theorem on the sphere was developed, reducing the required number of samples by a factor of two for equiangular sampling schemes. Through numerical simulations we verify the enhanced fidelity of sparse image reconstruction due to the more efficient sampling of the sphere provided by the new sampling theorem.
99 - N. Read 2016
In a tight-binding lattice model with $n$ orbitals (single-particle states) per site, Wannier functions are $n$-component vector functions of position that fall off rapidly away from some location, and such that a set of them in some sense span all s tates in a given energy band or set of bands; compactly-supported Wannier functions are such functions that vanish outside a bounded region. They arise not only in band theory, but also in connection with tensor-network states for non-interacting fermion systems, and for flat-band Hamiltonians with strictly short-range hopping matrix elements. In earlier work, it was proved that for general complex band structures (vector bundles) or general complex Hamiltonians---that is, class A in the ten-fold classification of Hamiltonians and band structures---a set of compactly-supported Wannier functions can span the vector bundle only if the bundle is topologically trivial, in any dimension $d$ of space, even when use of an overcomplete set of such functions is permitted. This implied that, for a free-fermion tensor network state with a non-trivial bundle in class A, any strictly short-range parent Hamiltonian must be gapless. Here, this result is extended to all ten symmetry classes of band structures without additional crystallographic symmetries, with the result that in general the non-trivial bundles that can arise from compactly-supported Wannier-type functions are those that may possess, in each of $d$ directions, the non-trivial winding that can occur in the same symmetry class in one dimension, but nothing else. The results are obtained from a very natural usage of algebraic $K$-theory, based on a ring of polynomials in $e^{pm ik_x}$, $e^{pm ik_y}$, . . . , which occur as entries in the Fourier-transformed Wannier functions.
81 - Diana T. Stoeva 2021
The main purpose of the paper is to give a characterization of all compactly supported dual windows of a Gabor frame. As an application, we consider an iterative procedure for approximation of the canonical dual window via compactly supported dual wi ndows on every step. In particular, the procedure allows to have approximation of the canonical dual window via dual windows from certain modulation spaces or from the Schwartz space.
173 - J. D. McEwen , Y. Wiaux 2011
We develop a novel sampling theorem on the sphere and corresponding fast algorithms by associating the sphere with the torus through a periodic extension. The fundamental property of any sampling theorem is the number of samples required to represent a band-limited signal. To represent exactly a signal on the sphere band-limited at L, all sampling theorems on the sphere require O(L^2) samples. However, our sampling theorem requires less than half the number of samples of other equiangular sampling theorems on the sphere and an asymptotically identical, but smaller, number of samples than the Gauss-Legendre sampling theorem. The complexity of our algorithms scale as O(L^3), however, the continual use of fast Fourier transforms reduces the constant prefactor associated with the asymptotic scaling considerably, resulting in algorithms that are fast. Furthermore, we do not require any precomputation and our algorithms apply to both scalar and spin functions on the sphere without any change in computational complexity or computation time. We make our implementation of these algorithms available publicly and perform numerical experiments demonstrating their speed and accuracy up to very high band-limits. Finally, we highlight the advantages of our sampling theorem in the context of potential applications, notably in the field of compressive sampling.
We develop a novel sampling theorem for functions defined on the three-dimensional rotation group SO(3) by connecting the rotation group to the three-torus through a periodic extension. Our sampling theorem requires $4L^3$ samples to capture all of t he information content of a signal band-limited at $L$, reducing the number of required samples by a factor of two compared to other equiangular sampling theorems. We present fast algorithms to compute the associated Fourier transform on the rotation group, the so-called Wigner transform, which scale as $O(L^4)$, compared to the naive scaling of $O(L^6)$. For the common case of a low directional band-limit $N$, complexity is reduced to $O(N L^3)$. Our fast algorithms will be of direct use in speeding up the computation of directional wavelet transforms on the sphere. We make our SO3 code implementing these algorithms publicly available.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا