ترغب بنشر مسار تعليمي؟ اضغط هنا

The radio spectrum and magnetic field structure of SNR HB3

40   0   0.0 ( 0 )
 نشر من قبل JinLin Han
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف W.B. Shi




اسأل ChatGPT حول البحث

Evidence for a spectral flattening of the supernova remnant (SNR) HB3 (G132.7+1.3) was recently claimed in literature based on previously published total flux density data, and the flattening was further interpreted as the discovery of thermal bremsstrahlung emission in the shell of HB3. A spectral flattening has never been observed from any SNR before. Reliable observations of HB3 at frequencies above 3000 MHz are crucial to confirm such a spectral behaviour. We extracted 4800 MHz total intensity and polarisation data of HB3 from the Sino-German 6 cm polarisation survey of the Galactic plane made with the Urumqi 25 m telescope, and analysed the spectrum of HB3, together with Effelsberg data at 1408 MHz and 2675 MHz. We found an overall spectral index of HB3 of alpha=-0.61+-0.06 between 1408 MHz and 4800 MHz, similar to the index at lower frequencies. There is no spectral flattening at high frequencies. We detected strong polarised emission from HB3 at 4800 MHz. Our 4800 MHz data show a tangential field orientation in the HB3 shell.

قيم البحث

اقرأ أيضاً

We observed total and polarized radio continuum emission from the spiral galaxy M 101 at 6.2 cm and 11.1 cm wavelengths with the Effelsberg telescope. We use these data to study various emission components in M 101 and properties of the magnetic fiel d. Separation of thermal and non-thermal emission shows that the thermal emission is closely correlated with the spiral arms, while the non-thermal emission is more smoothly distributed indicating diffusion of cosmic ray electrons away from their places of origin. The radial distribution of both emissions has a break near R=16 kpc, where it steepens to an exponential scale length of about 5 kpc, which is about 2.5 times smaller than at R<16 kpc. The distribution of the polarized emission has a broad maximum near R=12 kpc and beyond R=16 kpc also decreases with about 5 kpc scalelength. It seems that near R=16 kpc a major change in the structure of M 101 takes place, which also affects the distributions of the strength of the random and ordered magnetic field. Beyond R=16 kpc the radial scale length of both fields is about 20 kpc, which implies that they decrease to about 0.3 mu G at R=70 kpc, which is the largest optical extent. The equipartition strength of the total field ranges from nearly 10 mu G at R<2 kpc to 4 mu G at R=22-24 kpc. As the random field dominates in M 101, wavelength-independent polarization is the main polarization mechanism. We show that energetic events causing HI shells of mean diameter <625 pc could partly be responsible for this. At radii <24 kpc, the random magnetic field depends on the star formation rate per area with a power-law exponent of 0.28+-0.02. The ordered magnetic field is generally aligned with the spiral arms with pitch angles that are about 8{deg} larger than those of HI filaments.
73 - R. A. Laing 2008
We present high-quality VLA images of the FR I radio galaxy 3C 31 in the frequency range 1365 to 8440 MHz with angular resolutions from 0.25 to 40 arcsec. Our new images reveal complex, well resolved filamentary substructure in the radio jets and tai ls. We also use these images to explore the spectral structure of 3C 31 on large and small scales. We infer the apparent magnetic field structure by correcting for Faraday rotation. Some of the intensity substructure in the jets is clearly related to structure in their apparent magnetic field: there are arcs of emission where the degree of linear polarization increases, with the apparent magnetic field parallel to the ridges of the arcs. The spectral indices are significantly steeper (0.62) within 7 arcsec of the nucleus than between 7 and 50 arcsec (0.52 - 0.57). The spectra of the jet edges are also slightly flatter than the average for their surroundings. At larger distances, the jets are clearly delimited from surrounding larger-scale emission both by their flatter radio spectra and by sharp brightness gradients. The spectral index of 0.62 in the first 7 arcsec of 3C 31s jets is very close to that found in other FR I galaxies where their jets first brighten in the radio and where X-ray synchrotron emission is most prominent. Farther from the nucleus, where the spectra flatten, X-ray emission is fainter relative to the radio. The brightest X-ray emission from FR I jets is therefore not associated with the flattest radio spectra, but with a particle-acceleration process whose characteristic energy index is 2.24. The spectral flattening with distance from the nucleus occurs where our relativistic jet models require deceleration, and the flatter-spectra at the jet edges may be associated with transverse velocity shear. (Slightly abridged)
55 - F. Govoni , M. Murgia , V. Vacca 2017
We study the intra-cluster magnetic field in the poor galaxy cluster Abell 194 by complementing radio data, at different frequencies, with data in the optical and X-ray bands. We analyze new total intensity and polarization observations of Abell 194 obtained with the Sardinia Radio Telescope (SRT). We use the SRT data in combination with archival Very Large Array observations to derive both the spectral aging and Rotation Measure (RM) images of the radio galaxies 3C40A and 3C40B embedded in Abell 194. The optical analysis indicates that Abell 194 does not show a major and recent cluster merger, but rather agrees with a scenario of accretion of small groups. Under the minimum energy assumption, the lifetimes of synchrotron electrons in 3C40B measured from the spectral break are found to be 157 Myrs. The break frequency image and the electron density profile inferred from the X-ray emission are used in combination with the RM data to constrain the intra-cluster magnetic field power spectrum. By assuming a Kolmogorov power law power spectrum, we find that the RM data in Abell 194 are well described by a magnetic field with a maximum scale of fluctuations of Lambda_max=64 kpc and a central magnetic field strength of <B0>=1.5 microG. Further out, the field decreases with the radius following the gas density to the power of eta=1.1. Comparing Abell 194 with a small sample of galaxy clusters, there is a hint of a trend between central electron densities and magnetic field strengths.
We present new Very Large Array (VLA) radio images at 74 and 324 MHz of the SNR W44. The VLA images, obtained with unprecedented angular resolution and sensitivity for such low frequencies have been used in combination with existing 1442 MHz radio da ta, Spitzer IR data, and ROSAT and Chandra X-ray data to investigate morphological and spectral properties of this SNR. The spatially resolved spectral index study revealed that the bright filaments, both around and across the SNR, have a straight spectrum between 74 and 1442 MHz, with alpha ~ -0.5, with two clear exceptions: a short portion of the SNR limb to the southeast, with alpha varying between 0 and +0.4 and a bright arc to the west where the spectrum breaks around 300 MHz and looks concave down. We conclude that at the shell and along the internal filaments, the electrons responsible for the synchrotron emission were accelerated at the shock according to a simple diffusive shock model; the positive spectrum corresponds to a location where the SN shock is running into a molecular cloud and where the line of sight intersects the photo dissociation region of an HII region and a young stellar object is present. The curved spectrum on the westernmost bright arc is explained as the consequence of strong post-shock densities and enhanced magnetic fields after the interaction of the SN shock with a collindant molecular cloud.
Evidence is accumulating suggesting that collisionless shocks in supernova remnants (SNRs) can amplify the interstellar magnetic field to hundreds of microgauss or even milli-gauss levels, as recently claimed for SNR RX J1713.7-3946. If these fields exist, they are almost certainly created by magnetic field amplification (MFA) associated with the efficient production of cosmic rays by diffusive shock acceleration (DSA) and their existence strengthens the case for SNRs being the primary source of galactic cosmic ray ions to the `knee and beyond. However, the high magnetic field values in SNRs are obtained exclusively from the interpretation of observations of radiation from relativistic electrons and if MFA via nonlinear DSA produces these fields the magnetic field that determines the maximum ion energy will be substantially less than the field that determines the maximum electron energy. We use results of a steady-state Monte Carlo simulation to show how nonlinear effects from efficient cosmic ray production and MFA reduce the maximum energy of protons relative to what would be expected from test-particle acceleration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا