ترغب بنشر مسار تعليمي؟ اضغط هنا

Radio polarization and magnetic field structure in M 101

62   0   0.0 ( 0 )
 نشر من قبل Rainer Beck
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We observed total and polarized radio continuum emission from the spiral galaxy M 101 at 6.2 cm and 11.1 cm wavelengths with the Effelsberg telescope. We use these data to study various emission components in M 101 and properties of the magnetic field. Separation of thermal and non-thermal emission shows that the thermal emission is closely correlated with the spiral arms, while the non-thermal emission is more smoothly distributed indicating diffusion of cosmic ray electrons away from their places of origin. The radial distribution of both emissions has a break near R=16 kpc, where it steepens to an exponential scale length of about 5 kpc, which is about 2.5 times smaller than at R<16 kpc. The distribution of the polarized emission has a broad maximum near R=12 kpc and beyond R=16 kpc also decreases with about 5 kpc scalelength. It seems that near R=16 kpc a major change in the structure of M 101 takes place, which also affects the distributions of the strength of the random and ordered magnetic field. Beyond R=16 kpc the radial scale length of both fields is about 20 kpc, which implies that they decrease to about 0.3 mu G at R=70 kpc, which is the largest optical extent. The equipartition strength of the total field ranges from nearly 10 mu G at R<2 kpc to 4 mu G at R=22-24 kpc. As the random field dominates in M 101, wavelength-independent polarization is the main polarization mechanism. We show that energetic events causing HI shells of mean diameter <625 pc could partly be responsible for this. At radii <24 kpc, the random magnetic field depends on the star formation rate per area with a power-law exponent of 0.28+-0.02. The ordered magnetic field is generally aligned with the spiral arms with pitch angles that are about 8{deg} larger than those of HI filaments.

قيم البحث

اقرأ أيضاً

We use the integrated polarized radio emission at 1.4 GHz ($Pi_{rm 1.4,GHz}$) from a large sample of AGN (796 sources at redshifts $z<0.7$) to study the large-scale magnetic field properties of radio galaxies in relation to the host galaxy accretion state. We find a fundamental difference in $Pi_{rm 1.4,GHz}$ between radiative-mode AGN (i.e. high-excitation radio galaxies, HERGs, and radio-loud QSOs) and jet-mode AGN (i.e. low-excitation radio galaxies, LERGs). While LERGs can achieve a wide range of $Pi_{rm 1.4,GHz}$ (up to $sim$$30%$), the HERGs and radio-loud QSOs are limited to $Pi_{rm 1.4,GHz} lesssim 15%$. A difference in $Pi_{rm 1.4,GHz}$ is also seen when the sample is divided at 0.5% of the total Eddington-scaled accretion rate, where the weakly accreting sources can attain higher values of $Pi_{rm 1.4,GHz}$. We do not find any clear evidence that this is driven by intrinsic magnetic field differences of the different radio morphological classes. Instead, we attribute the differences in $Pi_{rm 1.4,GHz}$ to the local environments of the radio sources, in terms of both the ambient gas density and the magnetoionic properties of this gas. Thus, not only are different large-scale gaseous environments potentially responsible for the different accretion states of HERGs and LERGs, we argue that the large-scale magnetised environments may also be important for the formation of powerful AGN jets. Upcoming high angular resolution and broadband radio polarization surveys will provide the high precision Faraday rotation measure and depolarization data required to robustly test this claim.
We present a polarization catalog of 533 extragalactic radio sources with 2.3 GHz total intensity above 420 mJy from the S-band Polarization All Sky Survey, S-PASS, with corresponding 1.4 GHz polarization information from the NRAO VLA Sky Survey, NVS S. We studied selection effects and found that fractional polarization, $pi$, of radio objects at both wavelengths depends on the spectral index, source magnetic field disorder, source size and depolarization. The relationship between depolarization, spectrum and size shows that depolarization occurs primarily in the source vicinity. The median $pi_{2.3}$ of resolved objects in NVSS is approximately two times larger than that of unresolved sources. Sources with little depolarization are $sim2$ times more polarized than both highly depolarized and re-polarized sources. This indicates that intrinsic magnetic field disorder is the dominant mechanism responsible for the observed low fractional polarization of radio sources at high frequencies. We predict that number counts from polarization surveys will be similar at 1.4 GHz and at 2.3 GHz, for fixed sensitivity, although $sim$10% of all sources may be currently missing because of strong depolarization. Objects with $pi_{1.4}approx pi_{2.3} ge 4%$ typically have simple Faraday structures, so are most useful for background samples. Almost half of flat spectrum ($alpha ge -0.5$) and $sim$25% of steep spectrum objects are re-polarized. Steep spectrum, depolarized sources show a weak negative correlation of depolarization with redshift in the range 0 $<$ z $<$ 2.3. Previous non-detections of redshift evolution are likely due the inclusion of re-polarized sources as well.
A new method for measuring the global magnetic field structure of the Galactic plane is presented. We have determined the near-infrared polarization of field stars around 52 Cepheids found in recent surveys toward the Galactic plane. The Cepheids are located at the galactic longitudes $-10^{circ}leq , l, leq +10.5^{circ}$ and latitudes $-0.22^{circ}leq , l, leq +0.45^{circ}$, and their distances are mainly in the range of 10 to 15 kpc from the Sun. Simple classification of the sightlines is made with the polarization behavior vs. $H-K_{mathrm S}$ color of field stars, and typical examples of three types are presented. Then, division of the field stars in each line of sight into (a) foreground, (b) bulge, and (c) background is made with the $Gaia$ DR2 catalog, the peak of the $H-K_{mathrm S}$ color histogram, and $H-K_{mathrm S}$ colors consistent with the distance of the Cepheid in the center, respectively. Differential analysis between them enables us to examine the magnetic field structure more definitely than just relying on the $H-K_{mathrm S}$ color difference. In one line of sight, the magnetic field is nearly parallel to the Galactic plane and well aligned all the way from the Sun to the Cepheid position on the other side of the Galactic center. Contrary to our preconceived ideas, however, sightlines having such well-aligned magnetic fields in the Galactic plane are rather small in number. At least 36 Cepheid fields indicate random magnetic field components are significant. Two Cepheid fields indicate that the magnetic field orientation changes more than 45 in the line of sight. The polarization increase per color change $P$/ ($H-K_{mathrm S}$) varies from region to region, reflecting the change in the ratio of the magnetic field strength and the turbulence strength.
A model of magnetic field structure is presented to help test the prevalence of flux freezing in star-forming clouds of various shapes, orientations, and degrees of central concentration, and to estimate their magnetic field strength. The model is ba sed on weak-field flux freezing in centrally condensed Plummer spheres and spheroids of oblate and prolate shape. For a spheroid of given density contrast, aspect ratio, and inclination, the model estimates the local field strength and direction, and the global field pattern of hourglass shape. Comparisons with a polarization simulation indicate typical angle agreement within 1 - 10 degrees. Scalable analytic expressions are given to match observed polarization patterns, and to provide inputs to radiative transfer codes for more accurate predictions. The model may apply to polarization observations of dense cores, elongated filamentary clouds, and magnetized circumstellar disks.
We studied large-scale magnetic field reversals of a galaxy based on a magnetic vector map of NGC6946. The magnetic vector map was constructed based on the polarization maps in the C and X bands after the determination of the geometrical orientation of a disk with the use of an infrared image and the velocity field, according to the trailing spiral arm assumption. We examined the azimuthal variation of the magnetic vector and found that the magnetic pitch angle changes continually as a function of the azimuthal angle in the inter-arm region. However, the direction of the magnetic field had $180^circ$ jumps at the azimuthal angles of $20^circ, 110^circ, 140^circ, 220^circ, 280^circ$, and $330^circ$. These reversals seem to be related to the spiral arms since the locations of the jumps are coincident with those of the spiral arms. These six reversals of the magnetic field were seen only in the inner region of NGC6946 whereas four reversals can be identified in the outer region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا