ﻻ يوجد ملخص باللغة العربية
We study the interaction of small amplitude, long wavelength solitary waves in the Fermi-Pasta-Ulam model with general nearest-neighbor interaction potential. We establish global-in-time existence and stability of counter-propagating solitary wave solutions. These solutions are close to the linear superposition of two solitary waves for large positive and negative values of time; for intemediate values of time these solutions describe the interaction of two counterpropagating pulses. These solutions are stable with respect to perturbations in $ell^2$ and asymptotically stable with respect to perturbations which decay exponentially at spatial $pm infty$.}
After a brief comprehensive review of old and new results on the well known Fermi-Pasta-Ulam (FPU) conservative system of $N$ nonlinearly coupled oscillators, we present a compact linear mode representation of the Hamiltonian of the FPU system with q
We investigate the validity of a soliton dynamics behavior in the semi-relativistic limit for the nonlinear Schrodinger equation in $R^{N}, Nge 3$, in presence of a singular external potential.
We prove the existence of asymptotic two-soliton states in the Fermi-Pasta-Ulam model with general interaction potential. That is, we exhibit solutions whose difference in $ell^2$ from the linear superposition of two solitary waves goes to zero as time goes to infinity.
We investigate the stability of traveling-pulse solutions to the stochastic FitzHugh-Nagumo equations with additive noise. Special attention is given to the effect of small noise on the classical deterministically stable traveling pulse. Our method i
Let $(Omega, mu)$ be a probability space endowed with an ergodic action, $tau$ of $( {mathbb R} ^n, +)$. Let $H(x,p; omega)=H_omega(x,p)$ be a smooth Hamiltonian on $T^* {mathbb R} ^n$ parametrized by $omegain Omega$ and such that $ H(a+x,p;tau_aomeg