ﻻ يوجد ملخص باللغة العربية
In the first part of this paper, we study the spin-S Kitaev model using spin wave theory. We discover a remarkable geometry of the minimum energy surface in the N-spin space. The classical ground states, called Cartesian or CN-ground states, whose number grows exponentially with the number of spins N, form a set of points in the N-spin space. These points are connected by a network of flat valleys in the N-spin space, giving rise to a continuous family of classical ground states. Further, the CN-ground states have a correspondence with dimer coverings and with self avoiding walks on a honeycomb lattice. The zero point energy of our spin wave theory picks out a subset from a continuous family of classically degenerate states as the quantum ground states; the number of these states also grows exponentially with N. In the second part, we present some exact results. For arbitrary spin-S, we show that localized Z_2 flux excitations are present by constructing plaquette operators with eigenvalues pm 1 which commute with the Hamiltonian. This set of commuting plaquette operators leads to an exact vanishing of the spin-spin correlation functions, beyond nearest neighbor separation, found earlier for the spin-1/2 model [G. Baskaran, S. Mandal and R. Shankar, Phys. Rev. Lett. 98, 247201 (2007)]. We introduce a generalized Jordan-Wigner transformation for the case of general spin-S, and find a complete set of commuting link operators, similar to the spin-1/2 model, thereby making the Z_2 gauge structure more manifest. The Jordan-Wigner construction also leads, in a natural fashion, to Majorana fermion operators for half-integer spin cases and hard-core boson operators for integer spin cases, strongly suggesting the presence of Majorana fermion and boson excitations in the respective low energy sectors.
We identify and discuss the ground state of a quantum magnet on a triangular lattice with bond-dependent Ising-type spin couplings, that is, a triangular analog of the Kitaev honeycomb model. The classical ground-state manifold of the model is spanne
We construct a class of exact ground states for correlated electrons on pentagon chains in the high density region and discuss their physical properties. In this procedure the Hamiltonian is first cast in a positive semidefinite form using composite
We examine the Si(111) multi-valley quantum Hall system and show that it exhibits an exceptionally rich interplay of broken symmetries and quantum Hall ordering already near integer fillings $ u$ in the range $ u=0-6$. This six-valley system has a la
We use the matrix product approach to construct all optimum ground states of general anisotropic spin-2 chains with nearest neighbour interactions and common symmetries. These states are exact ground states of the model and their properties depend on
We derive the exact insulator ground states of the projected Hamiltonian of magic-angle twisted bilayer graphene (TBG) flat bands with Coulomb interactions in various limits, and study the perturbations away from these limits. We define the (first) c