ﻻ يوجد ملخص باللغة العربية
We construct a class of exact ground states for correlated electrons on pentagon chains in the high density region and discuss their physical properties. In this procedure the Hamiltonian is first cast in a positive semidefinite form using composite operators as a linear combination of creation operators acting on the sites of finite blocks. In the same step, the interaction is also transformed to obtain terms which require for their minimum eigenvalue zero at least one electron on each site. The transformed Hamiltonian matches the original Hamiltonian through a nonlinear system of equations whose solutions place the deduced ground states in restricted regions of the parameter space. In the second step, nonlocal product wave functions in position space are constructed. They are proven to be unique ground states which describe non-saturated ferromagnetic and correlated half metallic states. These solutions emerge when the strength of the Hubbard interaction $U_i$ is site dependent inside the unit cell. In the deduced phases, the interactions tune the bare dispersive band structure such to develop an effective upper flat band. We show that this band flattening effect emerges for a broader class of chains and is not restricted to pentagon chains. For the characterization of the deduced solutions, uniqueness proofs, exact ground state expectation values for long-range hopping amplitudes and correlation functions are also calculated. The study of physical reasons which lead to the appearance of ferromagnetism has revealed a new mechanism for the emergence of an ordered phase, described here in details (because of lack of space see the continuation in the paper).
We model conducting pentagon chains with a multi orbital Hubbard model and prove that well below half filling exact ferromagnetic ground states appear. The rigorous method we use is based on the transformation of original hamiltonian into positive se
We derive the exact insulator ground states of the projected Hamiltonian of magic-angle twisted bilayer graphene (TBG) flat bands with Coulomb interactions in various limits, and study the perturbations away from these limits. We define the (first) c
The competition between kinetic energy and Coulomb interactions in electronic systems can lead to complex many-body ground states with competing superconducting, charge density wave, and magnetic orders. Here we study the low temperature phases of a
We use the matrix product approach to construct all optimum ground states of general anisotropic spin-2 chains with nearest neighbour interactions and common symmetries. These states are exact ground states of the model and their properties depend on
Low-dimensional electron systems fabricated from quantum matter have in recent years become available and are being explored with great intensity. This article gives an overview of the fundamental properties of such systems and summarizes the state o