ﻻ يوجد ملخص باللغة العربية
An SO(5)xU(1) gauge-Higgs unification model in the Randall-Sundrum warped space with top and bottom quarks is constructed. Additional fermions on the Planck brane make exotic particles heavy by effectively changing boundary conditions of bulk fermions from those determined by orbifold conditions. Gauge couplings of a top quark multiplet trigger electroweak symmetry breaking by the Hosotani mechanism, simultaneously giving a top quark the observed mass. The bottom quark mass is generated by combination of brane interactions and the Hosotani mechanism, where only one ratio of brane masses is relevant when the scale of brane masses is much larger than the Kaluza-Klein scale (sim 1.5 TeV). The Higgs mass is predicted to be 49.9 (53.5) GeV for the warp factor 10^{15} (10^{17}). The Wilson line phase turns out pi/2 and the Higgs couplings to W and Z vanish so that the LEP2 bound for the Higgs mass is evaded. In the flat spacetime limit the electroweak symmetry is unbroken.
The electroweak phase transition in GUT inspired $SO(5) times U(1) times SU(3)$ gauge-Higgs unification is shown to be of weakly first-order and occurs at $T = T_c^{ rm EW} sim 163 ,$GeV, which is very similar to the behavior in the standard model in
In the $SO(5) times U(1)$ gauge-Higgs unification the lightest, neutral component of $n_F$ $SO(5)$-spinor fermions (dark fermions), which are relevant for having the observed unstable Higgs boson, becomes the dark matter of the universe. We show that
Existing models of dynamical electroweak symmetry breaking (EWSB) find it very difficult to get a Higgs of mass lighter than $m_t$. Consequently, in light of the LHC discovery of the ~125 GeV Higgs, such models face a significant obstacle. Moreover,
We study the phase structure of the gauge theories in the space-time with one compact dimension, where the gauge symmetry can be broken by the Hosotani mechanism. As the extra dimension, we consider the SO(5) x U(1) gauge-Higgs unification in the Ran
Signatures of the $SO(5)times U(1)$ gauge-Higgs unification at LHC and future colliders are explored. The Kaluza-Klein (KK) mass spectra of $gamma, Z, Z_R$ and the Higgs self-couplings obey universality relations with the Aharonov-Bohm (AB) phase $th