ﻻ يوجد ملخص باللغة العربية
For general off-shell N=2 supergravity-matter systems in three spacetime dimensions, a formalism is developed to reduce the corresponding actions from superspace to components. The component actions are explicitly computed in the cases of Type I and Type II minimal supergravity formulations. We describe the models for topologically massive supergravity which correspond to all the known off-shell formulations for three-dimensional N=2 supergravity. We also present a universal setting to construct supersymmetric backgrounds associated with these off-shell supergravities.
This paper presents a projective superspace formulation for 4D N = 2 matter-coupled supergravity. We first describe a variant superspace realization for the N = 2 Weyl multiplet. It differs from that proposed by Howe in 1982 by the choice of the stru
The superspace formulation for four-dimensional N = 2 matter-coupled supergravity recently developed in arXiv:0805.4683 makes use of a new type of conformal compensator with infinitely many off-shell degrees of freedom: the so-called covariant weight
The superspace formulation of N=1 conformal supergravity in four dimensions is demonstrated to be equivalent to the conventional component field approach based on the superconformal tensor calculus. The detailed correspondence between two approaches
We obtain cosmological solutions with Kasner-like asymptotics in N=2 gauged and ungauged supergravity by maximal analytic continuation of plan
We give a classification of fully supersymmetric chiral ${cal N}=(8,0)$ AdS$_3$ vacua in general three-dimensional half-maximal gauged supergravities coupled to matter. These theories exhibit a wealth of supersymmetric vacua with background isometrie