ترغب بنشر مسار تعليمي؟ اضغط هنا

Potential Polynomials and Motzkin Paths

209   0   0.0 ( 0 )
 نشر من قبل Yidong Sun
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف Yidong Sun




اسأل ChatGPT حول البحث

A {em Motzkin path} of length $n$ is a lattice path from $(0,0)$ to $(n,0)$ in the plane integer lattice $mathbb{Z}timesmathbb{Z}$ consisting of horizontal-steps $(1, 0)$, up-steps $(1,1)$, and down-steps $(1,-1)$, which never passes below the x-axis. A {em $u$-segment {rm (resp.} $h$-segment {rm)}} of a Motzkin path is a maximum sequence of consecutive up-steps ({rm resp.} horizontal-steps). The present paper studies two kinds of statistics on Motzkin paths: number of $u$-segments and number of $h$-segments. The Lagrange inversion formula is utilized to represent the weighted generating function for the number of Motzkin paths according to the statistics as a sum of the partial Bell polynomials or the potential polynomials. As an application, a general framework for studying compositions are also provided.



قيم البحث

اقرأ أيضاً

In this paper, we propose a notion of colored Motzkin paths and establish a bijection between the $n$-cell standard Young tableaux (SYT) of bounded height and the colored Motzkin paths of length $n$. This result not only gives a lattice path interpre tation of the standard Young tableaux but also reveals an unexpected intrinsic relation between the set of SYTs with at most $2d+1$ rows and the set of SYTs with at most 2d rows.
201 - P. Blasiak 2008
We show that the formalism of hybrid polynomials, interpolating between Hermite and Laguerre polynomials, is very useful in the study of Motzkin numbers and central trinomial coefficients. These sequences are identified as special values of hybrid po lynomials, a fact which we use to derive their generalized forms and new identities satisfied by them.
Two subclasses of Motzkin paths, S-Motzkin and T-Motzkin paths, are introduced. We provide bijections between S-Motzkin paths and ternary trees, S-Motzkin paths and non-crossing trees, and T-Motzkin paths and ordered pairs of ternary trees. Symbolic equations for both paths, and thus generating functions for the paths, are provided. Using these, various parameters involving the two paths are analyzed.
164 - Toufik Mansour , Yidong Sun 2008
A {em k-generalized Dyck path} of length $n$ is a lattice path from $(0,0)$ to $(n,0)$ in the plane integer lattice $mathbb{Z}timesmathbb{Z}$ consisting of horizontal-steps $(k, 0)$ for a given integer $kgeq 0$, up-steps $(1,1)$, and down-steps $(1,- 1)$, which never passes below the x-axis. The present paper studies three kinds of statistics on $k$-generalized Dyck paths: number of $u$-segments, number of internal $u$-segments and number of $(u,h)$-segments. The Lagrange inversion formula is used to represent the generating function for the number of $k$-generalized Dyck paths according to the statistics as a sum of the partial Bell polynomials or the potential polynomials. Many important special cases are considered leading to several surprising observations. Moreover, enumeration results related to $u$-segments and $(u,h)$-segments are also established, which produce many new combinatorial identities, and specially, two new expressions for Catalan numbers.
We introduce a new concept of permutation avoidance pattern called hatted pattern, which is a natural generalization of the barred pattern. We show the growth rate of the class of permutations avoiding a hatted pattern in comparison to barred pattern . We prove that Dyck paths with no peak at height $p$, Dyck paths with no $ud... du$ and Motzkin paths are counted by hatted pattern avoiding permutations in $s_n(132)$ by showing explicit bijections. As a result, a new direct bijection between Motzkin paths and permutations in $s_n(132)$ without two consecutive adjacent numbers is given. These permutations are also represented on the Motzkin generating tree based on the Enumerative Combinatorial Object (ECO) method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا