ﻻ يوجد ملخص باللغة العربية
The dynamics of coupled 2D chaotic maps with time-delay on a scalefree-tree is studied, with different types of the collective behaviors already been reported for various values of coupling strength [1]. In this work we focus on the dynamics time-evolution at the coupling strength of the stability threshold and examine the properties of the regularization process. The time-scales involved in the appearance of the regular state and the periodic state are determined. We find unexpected regularity in the the systems final steady state: all the period values turn out to be integer multiples of one among given numbers. Moreover, the period value distribution follows a power-law with a slope of -2.24.
We study two-dimensional chaotic standard maps coupled along the edges of scale-free trees and tree-like subgraph (4-star) with a non-symplectic coupling and time delay between the nodes. Apart from the chaotic and regular 2-periodic motion, the coup
We show that a class of random all-to-all spin models, realizable in systems of atoms coupled to an optical cavity, gives rise to a rich dynamical phase diagram due to the pairwise separable nature of the couplings. By controlling the experimental pa
Coupled map lattices (CMLs) are prototypical dynamical systems on networks/graphs. They exhibit complex patterns generated via the interplay of diffusive/Laplacian coupling and nonlinear reactions modelled by a single iterated map at each node; the m
We investigate the robustness of a dynamical phase transition against quantum fluctuations by studying the impact of a ferromagnetic nearest-neighbour spin interaction in one spatial dimension on the non-equilibrium dynamical phase diagram of the ful
We investigate the processes of synchronization and phase ordering in a system of globally coupled maps possessing bistable, chaotic local dynamics. The stability boundaries of the synchronized states are determined on the space of parameters of the