ترغب بنشر مسار تعليمي؟ اضغط هنا

Near-edge x-ray absorption fine structure investigation of graphene

130   0   0.0 ( 0 )
 نشر من قبل Daniela Pacile
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the near-edge x-ray absorption fine structure (NEXAFS) spectrum of a single layer of graphite (graphene) obtained by micromechanical cleavage of Highly Ordered Pyrolytic Graphite (HOPG) on a SiO2 substrate. We utilized a PhotoEmission Electron Microscope (PEEM) to separately study single- double- and few-layers graphene (FLG) samples. In single-layer graphene we observe a splitting of the pi* resonance and a clear signature of the predicted interlayer state. The NEXAFS data illustrate the rapid evolution of the electronic structure with the increased number of layers.

قيم البحث

اقرأ أيضاً

We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low poer x-ray (bremsstrahlung) tube source, a spherically-bent crystal analyzer (SBCA), and an energy-resolving solid-state detector. This relatively in expensive, introductory level instrument achieves 1-eV energy resolution for photon energies of 5 keV to 10 keV while also dmeonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W x-ray tube, we find count rates for nonresonant x-ray emission spectroscopy (XES) comparable to those achived at monochromatized spectroscopy beamlines at synchrotron light sources. For x-ray absorption near edge structure (XANES), the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial high-powered line-focused x-ray tube or rotating anode x-ray generator would result in monochromatized fluxes of order 10^6 to 10^7 photons/s with no loss in energy resolution. This work establishes core technical capabilities for a rejuvenation of laboratory-based x-ray spectroscopies that could have special relevance for contemporary research on catalytic or electrical energy storage systems using transition-metal, lanthanide, or noble-metal active species.
Time-dependent and constituent-specific spectral changes in soft near edge X-ray spectroscopy (XAS) of an [Fe/MgO]$_8$ metal/insulator heterostructure upon laser excitation are analyzed at the O K-edge with picosecond time resolution. The oxygen abso rption edge of the insulator features a uniform intensity decrease of the fine structure at elevated phononic temperatures, which can be quantified by a simple simulation and fitting procedure presented here. Combining X-ray absorption spectroscopy with ultrafast electron diffraction measurements and ab initio calculations demonstrate that the transient intensity changes in XAS can be assigned to a transient lattice temperature. Thus, the sensitivity of transient near edge XAS to phonons is demonstrated.
The structural properties of Er-doped AlNO epilayers grown by radio frequency magnetron sputtering were studied by Extended X-ray Absorption Fine Structure (EXAFS) spectra recorded at the Er L 3 edge. The analysis revealed that Er substitutes for Al in all the studied samples and the increase in Er concentration from 0.5 to 3.6 at.% is not accompanied by formation of ErN, Er 2 O 3 or Er clusters. Simultaneously recorded X-ray Absorption Near Edge Structure (XANES) spectra verify that the bonding configuration of Er is similar in all studied samples. The Er-N distance is 2 constant at 2.18-2.19 {AA} i.e. approximately 15% larger than the Al-N bondlength, revealing that the introduction of Er in the cation sublattice causes considerable local distortion. The Debye-Waller factor, which measures the static disorder, of the second nearest shell of Al neighbors, has a local minimum for the sample containing 1% Er that coincides with the highest photoluminescence efficiency of the sample set.
We present a joint theoretical and experimental study of the oxygen $K$-edge spectra for LaFeO$_3$ and homovalent Ni-substituted LaFeO$_3$ (LaFe$_{0.75}$Ni$_{0.25}$O$_3$), using first-principles simulations based on density-functional theory with ext ended Hubbard functionals and x-ray absorption near edge structure (XANES) measurements. Ground-state and excited-state XANES calculations employ Hubbard on-site $U$ and inter-site $V$ parameters determined from first principles and the Lanczos recursive method to obtain absorption cross sections, which allows for a reliable description of XANES spectra in transition-metal compounds in a very broad energy range, with an accuracy comparable to that of hybrid functionals but at a substantially lower cost. We show that standard gradient-corrected exchange-correlation functionals fail in capturing accurately the electronic properties of both materials. In particular, for LaFe$_{0.75}$Ni$_{0.25}$O$_3$ they do not reproduce its semiconducting behaviour and provide a poor description of the pre-edge features at the O $K$ edge. The inclusion of Hubbard interactions leads to a drastic improvement, accounting for the semiconducting ground state of LaFe$_{0.75}$Ni$_{0.25}$O$_3$ and for a good agreement between calculated and measured XANES spectra. We show that the partial substitution of Fe for Ni affects the conduction-band bottom by generating a strongly hybridized O($2p$)-Ni($3d$) minority-spin empty electronic state. The present work, based on a consistent correction of self-interaction errors, outlines the crucial role of extended Hubbard functionals to describe the electronic structure of complex transition-metal oxides such as LaFeO$_3$ and LaFe$_{0.75}$Ni$_{0.25}$O$_3$ and paves the way to future studies on similar systems.
The structural, electronic and optical properties of cubic double perovskite BaCoWO6 have been studied. Neutron powder diffraction data is collected on this sample from 6K to 300K. The crystal structure is face centered cubic, space group being Fm3m (No. 225). We did not find evidence for long range magnetic ordering in this system in this temperature range. The band-gap is estimated using Uv-vis spectroscopy. The Co-K edge X-ray absorption (XAFS) spectra of Ba2CoWO6 was analysed together with those Co-foil, which was used as reference compounds. X-ray photoemission spectroscopy (XPS), X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) studies give the insight of the electronic and structural information on the Co local environment for Ba2CoWO6.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا