ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of an HI Counterpart to the Extended Tail of Mira

74   0   0.0 ( 0 )
 نشر من قبل Lynn D. Matthews
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف L. D. Matthews




اسأل ChatGPT حول البحث

We report the detection of an HI counterpart to the extended, far-ultraviolet-emitting tail associated with the asymptotic giant branch star Mira (o Ceti). Using the Nancay Radio Telescope (NRT), we have detected emission as far as 88 north of the star, confirming that the tail contains a significant atomic component (M_HI ~ 4x10e-3 M_sun). The NRT spectra reveal a deceleration of the tail gas caused by interaction with the local interstellar medium. We estimate an age for the tail of ~1.2x10e5 years, suggesting that the mass-loss history of Mira has been more prolonged than previous observational estimates. Using the Very Large Array (VLA) we have also imaged the HI tail out to ~12 (0.4 pc) from the star. The detected emission shows a ``head-tail morphology, but with complex substructure. Regions with detected HI emission correlate with far-ultraviolet-luminous regions on large scales, but the two tracers are not closely correlated on smaller scales (<1). We propose that detectable tails of HI are likely to be a common feature of red giants undergoing mass-loss.

قيم البحث

اقرأ أيضاً

We carried out a 5-pointing mosaic observation of TeV J2032+4130 at 1.4 and 4.8 GHz with the VLA in April of 2003. The analysis of the 4.8GHz data indicate weak wispy shell-like radio structure(s) which are at least partially non-thermal. The radio d ata is compatible with one or more young supernova remnants or perhaps the signature of large scale cluster shocks in this region induced by the violent action of the many massive stars in Cyg OB2.
We present a new high-sensitivity HI observation toward nearby spiral galaxy M101 and its adjacent 2$^{circ}times$ 2$^{circ}$ region using the Five-hundred-meter Aperture Spherical radio Telescope (FAST). From the observation, we detect a more extend ed and asymmetric HI disk around M101. While the HI velocity field within the M101s optical disk region is regular, indicating that the relatively strong disturbance occurs in its outer disk. Moreover, we identify three new HI clouds located on the southern edge of the M101s HI disk. The masses of the three HI clouds are 1.3$times$10$^{7}$ $M_{odot}$, 2.4$times$10$^{7}$ $M_{odot}$, and 2.0$times$10$^{7}$ $M_{odot}$, respectively. The HI clouds similar to dwarf companion NGC 5477 rotate with the HI disk of M101. Unlike the NGC 5477, they have no optical counterparts. Furthermore, we detect a new HI tail in the extended HI disk of M101. The HI tail detected gives a reliable evidence for M101 interaction with the dwarf companion NGC 5474. We argue that the extra-planar gas (three HI clouds) and the HI tail detected in the M101s disk may origin from a minor interaction with NGC 5474.
Recent observations of the Mira AB binary system have revealed a surrounding arc-like structure and a stream of material stretching 2 degrees away in opposition to the arc. The alignment of the proper motion vector and the arc-like structure shows th e structures to be a bow shock and accompanying tail. We have successfully hydrodynamically modelled the bow shock and tail as the interaction between the asymptotic giant branch (AGB) wind launched from Mira A and the surrounding interstellar medium. Our simulations show that the wake behind the bow shock is turbulent: this forms periodic density variations in the tail similar to those observed. We investigate the possiblity of mass-loss variations, but find that these have limited effect on the tail structure. The tail is estimated to be approximately 450,000 years old, and is moving with a velocity close to that of Mira itself. We suggest that the duration of the high mass-loss phase on the AGB may have been underestimated. Finally, both the tail curvature and the rebrightening at large distance can be qualitatively understood if Mira recently entered the Local Bubble. This is estimated to have occured 17 pc downstream from its current location.
We report the discovery, from the HI Parkes All-Sky Survey (HIPASS), of an isolated cloud of neutral hydrogen which we believe to be extragalactic. The HI mass of the cloud (HIPASS J1712-64) is very low, 1.7 x 10^7 Msun, using an estimated distance o f ~3.2 Mpc. Most significantly, we have found no optical companion to this object to very faint limits (mu(B)~ 27 mag arcsec^-2). HIPASS J1712-64 appears to be a binary system similar to, but much less massive than, HI 1225+01 (the Virgo HI Cloud) and has a size of at least 15 kpc. The mean velocity dispersion, measured with the Australia Telescope Compact Array (ATCA), is only 4 km/s for the main component and because of the weak or non-existent star-formation, possibly reflects the thermal linewidth (T<2000 K) rather than bulk motion or turbulence. The peak column density for HIPASS J1712-64, from the combined Parkes and ATCA data, is only 3.5 x 10^19 cm^-2, which is estimated to be a factor of two below the critical threshold for star formation. Apart from its significantly higher velocity, the properties of HIPASS J1712-64 are similar to the recently recognised class of Compact High Velocity Clouds. We therefore consider the evidence for a Local Group or Galactic origin, although a more plausible alternative is that HIPASS J1712-64 was ejected from the interacting Magellanic Cloud/Galaxy system at perigalacticon ~ 2 x 10^8 yr ago.
116 - Gerard A. Kriss 2017
We observed the quasar PG1211+143 using the Cosmic Origins Spectrograph on the Hubble Space Telescope in April 2015 as part of a joint campaign with the Chandra X-ray Observatory and the Jansky Very Large Array. Our ultraviolet spectra cover the wave length range 912-2100 A. We find a broad absorption feature (~1080 km/s) at an observed wavelength of 1240 A. Interpreting this as HI Ly alpha, in the rest frame of PG1211+143 (z=0.0809), this corresponds to an outflow velocity of -16,980 km/s (outflow redshift z_out ~ -0.0551), matching the moderate ionization X-ray absorption system detected in our Chandra observation and reported previously by Pounds et al. (2016). With a minimum HI column density of log N_HI > 14.5, and no absorption in other UV resonance lines, this Ly alpha absorber is consistent with arising in the same ultra-fast outflow as the X-ray absorbing gas. The Ly alpha feature is weak or absent in archival ultraviolet spectra of PG1211+143, strongly suggesting that this absorption is transient, and intrinsic to PG1211+143. Such a simultaneous detection in two independent wavebands for the first time gives strong confirmation of the reality of an ultra-fast outflow in an active galactic nucleus.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا