ﻻ يوجد ملخص باللغة العربية
We observed the quasar PG1211+143 using the Cosmic Origins Spectrograph on the Hubble Space Telescope in April 2015 as part of a joint campaign with the Chandra X-ray Observatory and the Jansky Very Large Array. Our ultraviolet spectra cover the wavelength range 912-2100 A. We find a broad absorption feature (~1080 km/s) at an observed wavelength of 1240 A. Interpreting this as HI Ly alpha, in the rest frame of PG1211+143 (z=0.0809), this corresponds to an outflow velocity of -16,980 km/s (outflow redshift z_out ~ -0.0551), matching the moderate ionization X-ray absorption system detected in our Chandra observation and reported previously by Pounds et al. (2016). With a minimum HI column density of log N_HI > 14.5, and no absorption in other UV resonance lines, this Ly alpha absorber is consistent with arising in the same ultra-fast outflow as the X-ray absorbing gas. The Ly alpha feature is weak or absent in archival ultraviolet spectra of PG1211+143, strongly suggesting that this absorption is transient, and intrinsic to PG1211+143. Such a simultaneous detection in two independent wavebands for the first time gives strong confirmation of the reality of an ultra-fast outflow in an active galactic nucleus.
Blueshifted absorption lines in the X-ray spectra of AGN show that ultra-fast outflows with typical velocities $v sim 0.1c$ are a common feature of these luminous objects. Such powerful AGN winds offer an explanation of the observed M-$sigma$ relatio
We present a study of X-ray ionization of magnetohydrodynamic (MHD) accretion-disk winds in an effort to constrain the physics underlying the highly-ionized ultra-fast outflows (UFOs) inferred by X-ray absorbers often detected in various sub-classes
We analyze the X-ray spectrum of the quasar PG1211+143 observed with the CCD and grating spectrometers on board XMM-Newton. Using an ion by ion fitting model we find an outflow component of about 3000 km/s that includes absorption lines of K-shell an
We present a detailed X-ray spectral study of the quasar PG 1211+143 based on Chandra High Energy Transmission Grating Spectrometer (HETGS) observations collected in a multi-wavelength campaign with UV data using the Hubble Space Telescope Cosmic Ori
Past X-ray observations of the nearby luminous quasar PDS 456 (at $z=0.184$) have revealed a wide angle accretion disk wind (Nardini et al. 2015), with an outflow velocity of $sim-0.25c$, as observed through observations of its blue-shifted iron K-sh