ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin Hall effect in a two-dimensional electron gas in the presence of a magnetic field

110   0   0.0 ( 0 )
 نشر من قبل Procolo Lucignano Dr.
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the spin Hall effect of a two-dimensional electron gas in the presence of a magnetic field and both the Rashba and Dresselhaus spin-orbit interactions. We show that the value of the spin Hall conductivity, which is finite only if the Zeeman spin splitting is taken into account, may be tuned by varying the ratio of the in-plane and out-of-plane components of the applied magnetic field. We identify the origin of this behavior with the different role played by the interplay of spin-orbit and Zeeman couplings for in-plane and out-of-plane magnetic field components.

قيم البحث

اقرأ أيضاً

143 - R. Raimondi , P. Schwab 2009
We provide a theoretical framework for the electric field control of the electron spin in systems with diffusive electron motion. The approach is valid in the experimentally important case where both intrinsic and extrinsic spin-orbit interaction in a two-dimensional electron gas are present simultaneously. Surprisingly, even when the extrinsic mechanism is the dominant driving force for spin Hall currents, the amplitude of the spin Hall conductivity may be considerably tuned by varying the intrinsic spin-orbit coupling via a gate voltage. Furthermore we provide an explanation of the experimentally observed out-of-plane spin polarization in a (110) GaAs quantum well.
We study the coupled dynamics of spin and charge currents in a two-dimensional electron gas in the transport diffusive regime. For systems with inversion symmetry there are established relations between the spin Hall effect, the anomalous Hall effect and the inverse spin Hall effect. However, in two-dimensional electron gases of semiconductors like GaAs, inversion symmetry is broken so that the standard arguments do not apply. We demonstrate that in the presence of a Rashba type of spin-orbit coupling (broken structural inversion symmetry) the anomalous Hall effect, the spin Hall and inverse spin Hall effect are substantially different effects. Furthermore we discuss the inverse spin Hall effect for a two-dimensional electron gas with Rashba and Dresselhaus spin-orbit coupling; our results agree with a recent experiment.
We compute the single-particle states of a two-dimensional electron gas confined to the surface of a cylinder immersed in a magnetic field. The envelope-function equation has been solved exactly for both an homogeneous and a periodically modulated ma gnetic field perpendicular to the cylinder axis. The nature and energy dispersion of the quantum states reflects the interplay between different lengthscales, namely, the cylinder diameter, the magnetic length, and, possibly, the wavelength of the field modulation. We show that a transverse homogeneous magnetic field drives carrier states from a quasi-2D (cylindrical) regime to a quasi-1D regime where carriers form channels along the cylinder surface. Furthermore, a magnetic field which is periodically modulated along the cylinder axis may confine the carriers to tunnel-coupled stripes, rings or dots on the cylinder surface, depending on the ratio between the the field periodicity and the cylinder radius. Results in different regimes are traced to either incipient Landau levels formation or Aharonov-Bohm behaviour.
107 - Likun Shi , Wenkai Lou , F. Cheng 2015
Based on the Born-Oppemheimer approximation, we divide total electron Hamiltonian in a spinorbit coupled system into slow orbital motion and fast interband transition process. We find that the fast motion induces a gauge field on slow orbital motion, perpendicular to electron momentum, inducing a topological phase. From this general designing principle, we present a theory for generating artificial gauge field and topological phase in a conventional two-dimensional electron gas embedded in parabolically graded GaAs/In$_{x}$Ga$_{1-x}$As/GaAs quantum wells with antidot lattices. By tuning the etching depth and period of antidot lattices, the band folding caused by superimposed potential leads to formation of minibands and band
81 - M. V. Durnev 2021
We study theoretically transverse photoconductivity induced by circularly polarized radiation, i.e. the photovoltaic Hall effect, and linearly polarized radiation causing intraband optical transitions in two-dimensional electron gas (2DEG). We develo p a microscopic theory of these effects based on analytical solution of the Boltzmann equation for arbitrary electron spectrum and scattering mechanism. We calculate the transverse photoconductivity of 2DEG with parabolic and linear dispersion for short-range and Coulomb scatterers at different temperatures. We show that the transverse electric current is significantly enhanced at frequencies comparable to the inverse energy relaxation time, whereas at higher frequencies the excitation spectrum and the direction of current depend on the scattering mechanism. We also analyse the effect of thermalization processes caused by electron-electron collisions on the photoconductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا