ﻻ يوجد ملخص باللغة العربية
Based on the Born-Oppemheimer approximation, we divide total electron Hamiltonian in a spinorbit coupled system into slow orbital motion and fast interband transition process. We find that the fast motion induces a gauge field on slow orbital motion, perpendicular to electron momentum, inducing a topological phase. From this general designing principle, we present a theory for generating artificial gauge field and topological phase in a conventional two-dimensional electron gas embedded in parabolically graded GaAs/In$_{x}$Ga$_{1-x}$As/GaAs quantum wells with antidot lattices. By tuning the etching depth and period of antidot lattices, the band folding caused by superimposed potential leads to formation of minibands and band
We study the coupled dynamics of spin and charge currents in a two-dimensional electron gas in the transport diffusive regime. For systems with inversion symmetry there are established relations between the spin Hall effect, the anomalous Hall effect
We provide a theoretical framework for the electric field control of the electron spin in systems with diffusive electron motion. The approach is valid in the experimentally important case where both intrinsic and extrinsic spin-orbit interaction in
We study the spin Hall effect of a two-dimensional electron gas in the presence of a magnetic field and both the Rashba and Dresselhaus spin-orbit interactions. We show that the value of the spin Hall conductivity, which is finite only if the Zeeman
At low energy, electrons in doped graphene sheets behave like massless Dirac fermions with a Fermi velocity which does not depend on carrier density. Here we show that modulating a two-dimensional electron gas with a long-wavelength periodic potentia
Quantum Hall stripe (QHS) phases, predicted by the Hartree-Fock theory, are manifested in GaAs-based two-dimensional electron gases as giant resistance anisotropies. Here, we predict a ``hidden QHS phase which exhibits emph{isotropic} resistivity who