ﻻ يوجد ملخص باللغة العربية
We have used the two-degree field (2dF) multi-fibre spectrograph of the Anglo-Australian Telescope to search for candidate members of the unusual globular cluster omega Centauri at and beyond the cluster tidal radius. Velocities with an accuracy of ~10 kms-1 were obtained for 4105 stars selected to lie in the vicinity of the lower giant branch in the cluster colour-magnitude diagram and which cover an area on the sky of ~2.4x3.9 deg2 centered on the cluster. Within the velocity interval 190-270 kms-1, the cluster member candidates have a steeply declining surface density distribution consistent with the adopted tidal radius of 57`. For stars in the sample beyond the tidal radius, an analysis of line-strengths from the spectra, as well as radial velocities, identifies only six stars as possible candidates for extra-tidal association with the cluster. If all six of these stars are indeed related to the cluster, then a maximum of 0.7 +/- 0.2 per cent of the total cluster mass is contained in the region between one and two tidal radii. Given this limit, we conclude that there is no compelling evidence for any significant extra-tidal population in omega Cen. The effects of tidal shocks on the outer parts of the cluster are consistent with this limit. Theories for the origin of omega Cen frequently suggest that the cluster is the former nucleus of a tidally stripped dwarf galaxy. Our results require that the stripping process must have been largely complete at early epochs, consistent with dynamical models of the process. The stripped former dwarf galaxy stars are therefore now widely distributed around the Galaxy.
We present manganese abundances in 10 red-giant members of the globular cluster Omega Centauri; 8 stars are from the most metal-poor population (RGB MP and RGB MInt1) while two targets are members of the more metal rich groups (RGB MInt2 and MInt3).
Using kinematics from Gaia and the large elemental abundance space of the second data release of the GALAH survey, we identify two new members of the Fimbulthul stellar stream, and chemically tag them to massive, multi-metallic globular cluster $omeg
The Quintuplet star cluster is one of only three known young ($<10$ Myr) massive (M $>10^4$ M$_odot$) clusters within $sim100$ pc of the Galactic Center. In order to explore star cluster formation and evolution in this extreme environment, we analyze
We present the results of a deep, wide-field search for transiting `Hot Jupiter (HJ) planets in the globular cluster omega Centauri. As a result of a 25-night observing run with the ANU 40-inch telescope at Siding Spring Observatory, a total of 109,7
The Kapteyn moving group has been postulated as tidal debris from $omega$ Centauri. If true, members of the group should show some of the chemical abundance patterns known for stars in the cluster. We present an optical and near-infrared high-resolut