ﻻ يوجد ملخص باللغة العربية
We present the results of a deep, wide-field search for transiting `Hot Jupiter (HJ) planets in the globular cluster omega Centauri. As a result of a 25-night observing run with the ANU 40-inch telescope at Siding Spring Observatory, a total of 109,726 stellar time series composed of 787 independent data points were produced with differential photometry in a 52x52 (0.75 deg^2) field centered on the cluster core, but extending well beyond. Taking into account the size of transit signals as a function of stellar radius, 45,406 stars have suitable photometric accuracy (<=0.045 mag to V=19.5) to search for transits. Of this sample, 31,000 stars are expected to be main sequence cluster members. All stars, both cluster and foreground, were subjected to a rigorous search for transit signatures; none were found. Extensive Monte Carlo simulations based on our actual data set allows us to determine the sensitivity of our survey to planets with radii ~1.5R_Jup, and thus place statistical upper limits on their occurrence frequency F. Smaller planets are undetectable in our data. At 95% confidence, the frequency of Very Hot Jupiters (VHJs) with periods P satisfying 1d<P<3d can be no more than F_VHJ < 1/1040 in omega Cen. For HJ and VHJ distributed uniformly over the orbital period range 1d<P<5d, F_VHJ+HJ < 1/600. Our limits on large, short-period planets are comparable to those recently reported for other Galactic fields, despite being derived with less telescope time.
UV observations of some massive globular clusters have revealed a significant population of stars hotter and fainter than the hot end of the horizontal branch (HB), the so-called blue hook stars. This feature might be explained either by the late hot
Past studies based on optical spectroscopy suggest that the five $omega$ Cen pulsators form a rather homogeneous group of hydrogen-rich subdwarf O stars with effective temperatures of around 50 000 K. This places the stars below the red edge of the t
We determine the fraction of F, G, and K dwarfs in the Solar Neighborhood hosting hot jupiters as measured by the California Planet Survey from the Lick and Keck planet searches. We find the rate to be 1.2pm0.38%, which is consistent with the rate re
We compare evolutionary models for close-in exoplanets coupling irradiation and evaporation due respectively to the thermal and high energy flux of the parent star with observations of recently discovered new transiting planets. The models provide an
We present the results of the SuperLupus Survey for transiting hot Jupiter planets, which monitored a single Galactic disk field spanning 0.66 sq. deg for 108 nights over three years. Ten candidates were detected: one is a transiting planet, two rema