ﻻ يوجد ملخص باللغة العربية
We have analysed, for the first time, the clustering properties of Wolf-Rayet (W-R) galaxies, using a large sample of 846 W-R galaxies selected from the Data Release 4 (DR4) of the SDSS. We compute the cross-correlation function between W-R galaxies and a reference sample of galaxies drawn from the DR4. We compare the function to the results for control samples of non-W-R star-forming galaxies that are matched closely in redshift, luminosity, concentration, 4000-AA break strength and specific star formation rate (SSFR). On scales larger than a few Mpc, W-R galaxies have almost the same clustering amplitude as the control samples, indicating that W-R galaxies and non-W-R control galaxies populate dark matter haloes of similar masses. On scales between 0.1--1$h^{-1}$ Mpc, W-R galaxies are less clustered than the control samples, and the size of the difference depends on the SSFR. Based on both observational and theoretical considerations, we speculate that this negative bias can be interpreted by W-R galaxies residing preferentially at the centers of their dark matter haloes. We examine the distribution of W-R galaxies more closely using the SDSS galaxy group catalogue of Yang et al., and find that $sim$82% of our W-R galaxies are the central galaxies of groups, compared to $sim$74% for the corresponding control galaxies. We find that W-R galaxies are hosted, on average, by dark matter haloes of masses of$10^{12.3}M_odot$, compared to $10^{12.1}M_odot$ for centrally-located W-R galaxies and $10^{12.7}M_odot$ for satellite ones. We would like to point out that this finding, which provides a direct observational support to our conjecture, is really very crude due to the small number of W-R galaxies and the incompleteness of the group catalogue, and needs more work in future with larger samples.
Wolf-Rayet (WR) galaxies are a rare population of galaxies that host living high-mass stars during their WR phase (i.e. WR stars) and are thus expected to provide interesting constraints on the stellar Initial Mass Function, massive star formation, s
Wolf-Rayet (WR) HII galaxies are local metal-poor star-forming galaxies, observed when the most massive stars are evolving from O stars to WR stars, making them template systems to study distant starbursts. We have been performing a program to invest
We present the main results of the PhD Thesis carried out by Lopez-Sanchez (2006), in which a detailed morphological, photometrical and spectroscopical analysis of a sample of 20 Wolf-Rayet (WR) galaxies was realized. The main aims are the study of t
As hosts of living high-mass stars, Wolf-Rayet (WR) regions or WR galaxies are ideal objects for constraining the high-mass end of the stellar initial mass function (IMF). We construct a large sample of 910 WR galaxies/regions that cover a wide range
Wolf-Rayet stars (WRs) represent the end of a massive stars life as it is about to turn into a supernova. Obtaining complete samples of such stars across a large range of metallicities poses observational challenges, but presents us with an exacting