ترغب بنشر مسار تعليمي؟ اضغط هنا

The Wolf-Rayet Content of the Galaxies of the Local Group and Beyond

109   0   0.0 ( 0 )
 نشر من قبل Kathryn Neugent
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Wolf-Rayet stars (WRs) represent the end of a massive stars life as it is about to turn into a supernova. Obtaining complete samples of such stars across a large range of metallicities poses observational challenges, but presents us with an exacting way to test current stellar evolutionary theories. A technique we have developed and refined involves interference filter imaging combined with image subtraction and crowded-field photometry. This helps us address one of the most controversial topics in current massive star research: the relative importance of binarity in the evolution of massive stars and formation of WRs. Here we discuss the current state of the field, including how the observed WR populations match with the predictions of both single and binary star evolutionary models. We end with what we believe are the most important next steps in WR research.

قيم البحث

اقرأ أيضاً

84 - Jorick S. Vink 2015
The Wolf-Rayet (WR) phenomenon is widespread in astronomy. It involves classical WRs, very massive stars (VMS), WR central stars of planetary nebula CSPN [WRs], and supernovae (SNe). But what is the root cause for a certain type of object to turn int o an emission-line star? In this contribution, I discuss the basic aspects of radiation-driven winds that might reveal the ultimate difference between WR stars and canonical O-type stars. I discuss the aspects of (i) self-enrichment via CNO elements, (ii) high effective temperatures Teff, (iii) an increase in the helium abundance Y, and finally (iv) the Eddington factor Gamma. Over the last couple of years, we have made a breakthrough in our understanding of Gamma-dependent mass loss, which will have far-reaching consequences for the evolution and fate of the most massive stars in the Universe. Finally, I discuss the prospects for studies of the WR phenomenon in the highest redshift Ly-alpha and He II emitting galaxies.
Aims: We investigate the massive stellar content of the nearby dwarf irregular Wolf-Rayet galaxy IC 4662, and consider its global star forming properties in the context of other metal-poor galaxies, the SMC, IC 10 and NGC 1569. Methods: Very Large Te lescope/FORS2 imaging and spectroscopy plus archival Hubble Space Telescope/ACS imaging datasets permit us to spatially identify the location, number and probable subtypes of Wolf-Rayet stars within this galaxy. We also investigate suggestions that a significant fraction of the ionizing photons of the two giant HII regions A1 and A2 lie deeply embedded within these regions. Results: Wolf-Rayet stars are associated with a number of sources within IC 4662-A1 and A2, plus a third compact HII region to the north west of A1 (A1-NW).Several sources appear to be isolated, single (or binary) luminous nitrogen sequence WR stars, while extended sources are clusters whose masses exceed the Orion Nebula Cluster by, at most, a factor of two. IC 4662 lacks optically visible young massive, compact clusters that are common in other nearby dwarf irregular galaxies. A comparison between radio and Halpha-derived ionizing fluxes of A1 and A2 suggests that 30-50% of their total Lyman continuum fluxes lie deeply embedded within these regions. Conclusions: The star formation surface density of IC 4662 is insufficient for this galaxy to qualify as a starburst galaxy, based upon its photometric radius, R_25. If instead, we were to adopt the V-band scale length R_D from Hunter & Elmegreen, IC 4662 would comfortably qualify as a starburst galaxy, since its star formation intensity would exceed 0.1 M_sun/yr/kpc^2.
The Wolf-Rayet nebula M1-67 around WR124 is located above the Galactic plane in a region mostly empty of interstellar medium, which makes it the perfect target to study the mass-loss episodes associated with the late stages of massive star evolution. Archive photometric observations from WISE, Spitzer (MIPS) and Herschel (PACS and SPIRE) are used to construct the spectral energy distribution (SED) of the nebula in the wavelength range of 12-500$mu$m. The infrared (photometric and spectroscopic) data and nebular optical data from the literature are modeled simultaneously using the spectral synthesis code Cloudy, where the free parameters are the gas density distribution and the dust grain size distribution. The infrared SED can be reproduced by dust grains with two size distributions: a MRN power-law distribution with grain sizes between 0.005 and 0.05$mu$m and a population of large grains with representative size 0.9$ mu$m. The latter points towards an eruptive origin for the formation of M1-67. The model predicts a nebular ionized gas mass of $M_mathrm{ion} = 9.2^{+1.6}_{-1.5}~mathrm{M}_odot$ and the estimated mass-loss rate during the dust-formation period is $dot{M} approx 6 times 10^{-4} mathrm{M}_odot$yr$^{-1}$. We discuss the implications of our results in the context of single and binary stellar evolution and propose that M1-67 represents the best candidate for a post-common envelope scenario in massive stars.
Wolf-Rayet stars are amongst the rarest but also most intriguing massive stars. Their extreme stellar winds induce famous multi-wavelength circumstellar gas nebulae of various morphologies, spanning from circles and rings to bipolar shapes. This stud y is devoted to the investigation of the formation of young, asymmetric Wolf-Rayet gas nebulae and we present a 2.5-dimensional magneto-hydrodynamical toy model for the simulation of Wolf-Rayet gas nebulae generated by wind-wind interaction. Our method accounts for stellar wind asymmetries, rotation, magnetisation, evolution and mixing of materials. It is found that the morphology of the Wolf-Rayet nebulae of blue supergiant ancestors is tightly related to the wind geometry and to the stellar phase transition time interval, generating either a broadened peanut-like or a collimated jet-like gas nebula. Radiative transfer calculations of our Wolf-Rayet nebulae for dust infrared emission at 24 $mu$m show that the projected diffuse emission can appear as oblate, bipolar, ellipsoidal or ring structures. Important projection effects are at work in shaping observed Wolf-Rayet nebulae. This might call a revision of the various classifications of Wolf-Rayet shells, which are mostly based on their observed shape. Particularly, our models question the possibility of producing pre-Wolf-Rayet wind asymmetries, responsible for bipolar nebulae like NGC 6888, within the single red supergiant evolution channel scenario. We propose that bipolar Wolf-Rayet nebulae can only be formed within the red supergiant scenario by multiple/merged massive stellar systems, or by single high-mass stars undergoing additional, e.g. blue supergiant, evolutionary stages prior to the Wolf-Rayet phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا