ﻻ يوجد ملخص باللغة العربية
The ongoing search for new superconductors has recently yielded a new family of oxypnictides composed of alternating La_2O_{2-x}F_x and Fe_2As_2 layers [1-4] with transition temperatures T_c of 25-28 K, which can be raised to 40-43 K by replacing La with Ce [5] or Sm [6] or to 52 K by replacing La with Nd and Pr [7, 8]. Recent experiments and band structure calculations have suggested an unconventional multiband superconductivity in the layers of paramagnetic Fe ions, which would normally destroy superconductivity in the traditional mechanism of the s-wave Cooper pairing. Here we report very high-field resistance measurements up to 45T, which show a remarkable enhancement of the upper critical fields B_c2 at low temperatures, as compared to those expected from the already high slopes of dB_c2/dT ~ 2T/K near T_c . The deduced B_c2(0) ~ 63-65 T exceeds the paramagnetic limit, consistent with strong coupling and important two-band effects in LaFeAsO_0.89F_0.11. We argue that oxypnictides are emerging as a new class of high-field superconductors surpassing the B_c2 of Nb_3Sn, MgB_2, and the Chevrel phases and perhaps approaching the 100T field benchmark of the high-T_c cuprates.
In multiorbital materials, superconductivity can exhibit new exotic forms that include several coupled condensates. In this context, quantum confinement in two-dimensional superconducting oxide interfaces offers new degrees of freedom to engineer the
In the usual Ginzburg-Landau theory the critical value of the ratio of two fundamental length scales in the thery $kappa_c=1/sqrt{2}$ separates regimes of type-I and type-II superconductivity. The latter regime possess thermodynamically stable vortex
The recently discovered superconductivity in Nd$_{1-x}$Sr$_x$NiO$_2$ provides a new opportunity for studying strongly correlated unconventional superconductivity. The single-hole Ni$^+$ ($3d^9$) configuration in the parent compound NdNiO$_2$ is simil
In this paper we study the effects of hybridization in the superconducting properties of a two-band system. We consider the cases that these bands are formed by electronic orbitals with angular momentum, such that, the hybridization $V(mathbf{k})$ am
We investigate the possibility of multi-band superconductivity in SrTiO$_{3}$ films and interfaces using a two-dimensional two-band model. In the undoped compound, one of the bands is occupied whereas the other is empty. As the chemical potential shi