ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal and nonuniversal contributions to block-block entanglement in many-fermion systems

143   0   0.0 ( 0 )
 نشر من قبل Klaus Capelle
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate the entanglement entropy of blocks of size x embedded in a larger system of size L, by means of a combination of analytical and numerical techniques. The complete entanglement entropy in this case is a sum of three terms. One is a universal x and L-dependent term, first predicted by Calabrese and Cardy, the second is a nonuniversal term arising from the thermodynamic limit, and the third is a finite size correction. We give an explicit expression for the second, nonuniversal, term for the one-dimensional Hubbard model, and numerically assess the importance of all three contributions by comparing to the entropy obtained from fully numerical diagonalization of the many-body Hamiltonian. We find that finite-size corrections are very small. The universal Calabrese-Cardy term is equally small for small blocks, but becomes larger for x>1. In all investigated situations, however, the by far dominating contribution is the nonuniversal term steming from the thermodynamic limit.



قيم البحث

اقرأ أيضاً

We study the spectral statistics of spatially-extended many-body quantum systems with on-site Abelian symmetries or local constraints, focusing primarily on those with conserved dipole and higher moments. In the limit of large local Hilbert space dim ension, we find that the spectral form factor $K(t)$ of Floquet random circuits can be mapped exactly to a classical Markov circuit, and, at late times, is related to the partition function of a frustration-free Rokhsar-Kivelson (RK) type Hamiltonian. Through this mapping, we show that the inverse of the spectral gap of the RK-Hamiltonian lower bounds the Thouless time $t_{mathrm{Th}}$ of the underlying circuit. For systems with conserved higher moments, we derive a field theory for the corresponding RK-Hamiltonian by proposing a generalized height field representation for the Hilbert space of the effective spin chain. Using the field theory formulation, we obtain the dispersion of the low-lying excitations of the RK-Hamiltonian in the continuum limit, which allows us to extract $t_{mathrm{Th}}$. In particular, we analytically argue that in a system of length $L$ that conserves the $m^{th}$ multipole moment, $t_{mathrm{Th}}$ scales subdiffusively as $L^{2(m+1)}$. We also show that our formalism directly generalizes to higher dimensional circuits, and that in systems that conserve any component of the $m^{th}$ multipole moment, $t_{mathrm{Th}}$ has the same scaling with the linear size of the system. Our work therefore provides a general approach for studying spectral statistics in constrained many-body chaotic systems.
192 - L.Amico , F.Baroni , A.Fubini 2006
We study the pairwise entanglement close to separable ground states of a class of one dimensional quantum spin models. At T=0 we find that such ground states separate regions, in the space of the Hamiltonian parameters, which are characterized by qua litatively different types of entanglement, namely parallel and antiparallel entanglement; we further demonstrate that the range of the Concurrence diverges while approaching separable ground states, therefore evidencing that such states, with uncorrelated fluctuations, are reached by a long range reshuffling of the entanglement. We generalize our results to the analysis of quantum phase transitions occurring in bosonic and fermionic systems. Finally, the effects of finite temperature are considered: At T>0 we evidence the existence of a region where no pairwise entanglement survives, so that entanglement, if present, is genuinely multipartite.
Contrary to the conventional wisdom in Hermitian systems, a continuous quantum phase transition between gapped phases is shown to occur without closing the energy gap $Delta$ in non-Hermitian quantum many-body systems. Here, the relevant length scale $xi simeq v_{rm LR}/Delta$ diverges because of the breakdown of the Lieb-Robinson bound on the velocity (i.e., unboundedness of $v_{rm LR}$) rather than vanishing of the energy gap $Delta$. The susceptibility to a change in the system parameter exhibits a singularity due to nonorthogonality of eigenstates. As an illustrative example, we present an exactly solvable model by generalizing Kitaevs toric-code model to a non-Hermitian regime.
We study the entanglement of purification (EoP), a measure of total correlation between two subsystems $A$ and $B$, for free scalar field theory on a lattice and the transverse-field Ising model by numerical methods. In both of these models, we find that the EoP becomes a non-monotonic function of the distance between $A$ and $B$ when the total number of lattice sites is small. When it is large, the EoP becomes monotonic and shows a plateau-like behavior. Moreover, we show that the original reflection symmetry which exchanges $A$ and $B$ can get broken in optimally purified systems. In the Ising model, we find this symmetry breaking in the ferromagnetic phase. We provide an interpretation of our results in terms of the interplay between classical and quantum correlations.
The analysis of the entanglement entropy of a subsystem of a one-dimensional quantum system is a powerful tool for unravelling its critical nature. For instance, the scaling behaviour of the entanglement entropy determines the central charge of the a ssociated Virasoro algebra. For a free fermion system, the entanglement entropy depends essentially on two sets, namely the set $A$ of sites of the subsystem considered and the set $K$ of excited momentum modes. In this work we make use of a general duality principle establishing the invariance of the entanglement entropy under exchange of the sets $A$ and $K$ to tackle complex problems by studying their dual counterparts. The duality principle is also a key ingredient in the formulation of a novel conjecture for the asymptotic behavior of the entanglement entropy of a free fermion system in the general case in which both sets $A$ and $K$ consist of an arbitrary number of blocks. We have verified that this conjecture reproduces the numerical results with excellent precision for all the configurations analyzed. We have also applied the conjecture to deduce several asymptotic formulas for the mutual and $r$-partite information generalizing the known ones for the single block case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا