ترغب بنشر مسار تعليمي؟ اضغط هنا

Systematic study of $^{9,10,11}$Li with the tensor and pairing correlations

128   0   0.0 ( 0 )
 نشر من قبل Takayuki Myo
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We make a systematic study of Li isotopes (A=9,10,11) in the tensor optimized shell model for 9Li and treat the additional valence neutrons in the cluster model approach by taking into account the Pauli-blocking effect caused by the tensor and pairing correlations. We describe the tensor correlations in 9Li fully in the tensor-optimized shell model, where the variation of the size parameters of the single particle orbits is essential for getting strong tensor correlations. We have shown in our previous study that in $^{10,11}$Li the tensor and pairing correlations in 9Li are Pauli-blocked by additional valence neutrons, which make the p-shell configurations pushed up in energy. As a result, the $s^2$ valence neutron component increases to reveal the halo structure of 11Li and the inversion phenomenon of the single particle spectrum in 10Li arises. Following the previous study, we demonstrate the reliability of our framework by performing a detailed systematic analysis of the structures of $^{9,10,11}$Li, such as the charge radius, the spatial correlation of halo neutrons of 11Li and the electromagnetic properties of Li isotopes. The detailed effects of the Pauli-blocking on the spectroscopic properties of $^{10,11}$Li are also discussed. It is found that the blocking acts strongly for the 11Li ground state rather than for 10Li and for the dipole excited states of 11Li, which is mainly caused by the interplay between the tensor correlation in 9Li and the halo neutrons. The results obtained in these analyses clearly show that the inert core assumption of 9Li is not realistic to explain the anomalous structures observed in $^{10,11}$Li. For the dipole excitation spectrum of 11Li, the effect of the final state interactions is discussed in terms of the dipole strength function.

قيم البحث

اقرأ أيضاً

A simplified version of the Wigner--transformed time--dependent Hartree--Fock--Bogoliubov equations, leading to a solvable model for finite systems of fermions with pairing correlations, is introduced. In this model, pairing correlations result in a coupling of the Vlasov--type equation for the normal phase--space density with that for the imaginary part of the anomalous density. The effect of pairing correlations on the linear response of the system is studied for a finite one--dimensional system and an explicit expression for the correlated propagator is given.
In the latest version of the QMC model, QMC$pi$-III-T, the density functional is improved to include the tensor component quadratic in the spin-current and a pairing interaction derived in the QMC framework. Traditional pairing strengths are expresse d in terms of the QMC parameters and the parameters of the model optimised. A variety of nuclear observables are calculated with the final set of parameters. The inclusion of the tensor component improves the predictions for ground-state bulk properties, while it has a small effect on the single-particle spectra. Further, its effect on the deformation of selected nuclei is found to improve the energies of doubly-magic nuclei at sphericity. Changes in the energy curves along the Zr chain with increasing deformation are investigated in detail. The new pairing functional is also applied to the study of neutron shell gaps, where it leads to improved predictions for subshell closures in the superheavy region.
Rotational and deformation dependence of isovector and isoscalar pairing correlations at finite temperature are studied in an exactly solvable cranked deformed shell model Hamiltonian. It is shown that isovector pairing correlations, as expected, dec rease with increasing deformation and the isoscalar pairing correlations remain constant at temperature, T=0. However, it is observed that at finite temperature both isovector and isoscalar pairing correlations are enhanced with increasing deformation, which contradict the mean-field predictions. It is also demonstrated that the pair correlations, which are quenched at T=0 and high rotational frequency re-appear at finite temperature. The changes in the individual multipole pairing fields as a function of rotation and deformation are analyzed in detail.
The structure and density dependence of the pairing gap in infinite matter is relevant for astrophysical phenomena and provides a starting point for the discussion of pairing properties in nuclear structure. Short-range correlations can significantly deplete the available single-particle strength around the Fermi surface and thus provide a reduction mechanism of the pairing gap. Here, we study this effect in the singlet and triplet channels of both neutron matter and symmetric nuclear matter. Our calculations use phase-shift equivalent interactions and chiral two-body and three-body interactions as a starting point. We find an unambiguous reduction of the gap in all channels with very small dependence on the NN force in the singlet neutron matter and the triplet nuclear matter channel. In the latter channel, short range correlations alone provide a 50% reduction of the pairing gap.
High-spin rotational bands in rare-earth Er ($Z=68$), Tm ($Z=69$) and Yb ($Z=70$) isotopes are investigated by three different nuclear models. These are (i) the cranked relativistic Hartree-Bogoliubov (CRHB) approach with approximate particle number projection by means of the Lipkin-Nogami (LN) method, (ii) the cranking covariant density functional theory (CDFT) with pairing correlations treated by a shell-model-like approach (SLAP) or the so called particle-number conserving (PNC) method, and (iii) cranked shell model (CSM) based on the Nilsson potential with pairing correlations treated by the PNC method. A detailed comparison between these three models in the description of the ground state rotational bands of even-even Er and Yb isotopes is performed. The similarities and differences between these models in the description of the moments of inertia, the features of band crossings, equilibrium deformations and pairing energies of even-even nuclei under study are discussed. These quantities are considered as a function of rotational frequency and proton and neutron numbers. The changes in the properties of the first band crossings with increasing neutron number in this mass region are investigated. On average, a comparable accuracy of the description of available experimental data is achieved in these models. However, the differences between model predictions become larger above the first band crossings. Because of time-consuming nature of numerical calculations in the CDFT-based models, a systematic study of the rotational properties of both ground state and excited state bands in odd-mass Tm nuclei is carried out only by the PNC-SCM. With few exceptions, the rotational properties of experimental 1-quasiparticle and 3-quasiparticle bands in $^{165,167,169,171}$Tm are reproduced reasonably well.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا