ترغب بنشر مسار تعليمي؟ اضغط هنا

Hydromagnetic waves in a superfluid neutron star with strong vortex pinning

62   0   0.0 ( 0 )
 نشر من قبل Yuri Levin
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Neutron-star cores may be hosts of a unique mixture of a neutron superfluid and a proton superconductor. Compelling theoretical arguments have been presented over the years that if the proton superconductor is of type II, than the superconductor fluxtubes and superfluid vortices should be strongly coupled and hence the vortices should be pinned to the proton-electron plasma in the core. We explore the effect of this pinning on the hydromagnetic waves in the core, and discuss 2 astrophysical applications of our results: 1. We show that even in the case of strong pinning, the core Alfven waves thought to be responsible for the low-frequency magnetar quasi-periodic oscillations (QPO) are not significantly mass-loaded by the neutrons. The decoupling of about 0.95 of the core mass from the Alfven waves is in fact required in order to explain the QPO frequencies, for simple magnetic geometries and for magnetic fields not greater than 10^{15} Gauss. 2. We show that in the case of strong vortex pinning, hydromagnetic stresses exert stabilizing influence on the Glaberson instability, which has recently been proposed as a potential source of superfluid turbulence in neutron stars.


قيم البحث

اقرأ أيضاً

The nature of the interaction between superfluid vortices and the neutron star crust, conjectured by Anderson and Itoh in 1975 to be at the heart vortex creep and the cause of glitches, has been a long-standing question in astrophysics. Using a quali tatively new approach, we follow the dynamics as superfluid vortices move in response to the presence of nuclei (nuclear defects in the crust). The resulting motion is perpendicular to the force, similar to the motion of a spinning top when pushed. We show that nuclei repel vortices in the neutron star crust, and characterize the force as a function of the vortex-nucleus separation.
We characterize the mechanisms of vortex pinning in a superfluid thin film described by the two-dimensional Gross-Pitaevskii equation. We consider a vortex scattering experiment whereby a single vortex in a superfluid flow interacts with a circular p inning potential. By an analogy with linear dielectrics, we develop an analytical hydrodynamic approximation that predicts vortex trajectories, the vortex fixed point, and the unpinning superfluid velocity beyond which the vortex cannot be trapped. We then solve the Gross-Pitaevskii equation to validate this model, and build a phase portrait of vortex pinning. We identify two different dynamical pinning mechanisms, marked by distinctive phonon emission signatures: firstly a fall-on regime enabled by acoustic radiation, and secondly a pair-creation regime, mediated by vortex dipoles nucleated within the pin. Pinning potentials with a size on the order of the healing length are found to be optimal for vortex capture. Our results will be useful in mitigating the deleterious effects of drag due to vortices in superfluid channels, in analogy to maximising supercurrents in type-II superconductors.
We consider the pinning of superfluid (neutron) vortices to magnetic fluxtubes associated with a type II (proton) superconductor in neutron star cores. We demonstrate that core pinning affects the spin-down of the system significantly, and discuss im plications for regular radio pulsars and magnetars. We find that magnetars are likely to be in the pinning regime, while most radio pulsars are not. This suggests that the currently inferred magnetic field for magnetars may be overestimated. We also obtain a new timescale for the magnetic field evolution which could be associated with the observed activity in magnetars, provided that the field has a strong toroidal component.
We study effects of pinning on the dynamics of a vortex lattice in a type II superconductor in the strong-pinning situation and determine the force--velocity (or current--voltage) characteristic combining analytical and numerical methods. Our analysi s deals with a small density $n_p$ of defects that act with a large force $f_p$ on the vortices, thereby inducing bistable configurations that are a characteristic feature of strong pinning theory. We determine the velocity-dependent average pinning-force density $langle F_p(v)rangle$ and find that it changes on the velocity scale $v_p sim f_p/eta a_0^3$, where $eta$ is the viscosity of vortex motion and $a_0$ the distance between vortices. In the small pin-density limit, this velocity is much larger than the typical flow velocity $v_c sim F_c/eta$ of the free vortex system at drives near the critical force-density $F_c = langle F_p(v=0)rangle propto n_p f_p$. As a result, we find a generic excess-force characteristic, a nearly linear force--velocity characteristic shifted by the critical force-density $F_c$; the linear flux-flow regime is approached only at large drives. Our analysis provides a derivation of Coulombs law of dry friction for the case of strong vortex pinning.
104 - C. Tarantini , S. Lee , Y. Zhang 2010
We report measurements of the field and angular dependences of Jc of truly epitaxial Co-doped BaFe2As2 thin films grown on SrTiO3/(La,Sr)(Al,Ta)O3 with different SrTiO3 template thicknesses. The films show Jc comparable to Jc of single crystals and a maximum pinning force Fp(0.6Tc) > 5 GN/m3 at H/Hirr ~ 0.5 indicative of strong vortex pinning effective up to high fields. Due to the strong correlated c-axis pinning, Jc for field along the c-axis exceeds Jc for H//ab plane, inverting the expectation of the Hc2 anisotropy. HRTEM reveals that the strong vortex pinning is due to a high density of nanosize columnar defects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا