ﻻ يوجد ملخص باللغة العربية
The nature of the interaction between superfluid vortices and the neutron star crust, conjectured by Anderson and Itoh in 1975 to be at the heart vortex creep and the cause of glitches, has been a long-standing question in astrophysics. Using a qualitatively new approach, we follow the dynamics as superfluid vortices move in response to the presence of nuclei (nuclear defects in the crust). The resulting motion is perpendicular to the force, similar to the motion of a spinning top when pushed. We show that nuclei repel vortices in the neutron star crust, and characterize the force as a function of the vortex-nucleus separation.
The strength of neutron star crust is crucial for modelling magnetar flares, pulsar glitches and gravitational wave emission. We aim to shed some light on this problem by analysing uniaxial stretch deformation (elongation and contraction) of perfect
We investigate the dynamics of a quantized vortex and a nuclear impurity immersed in a neutron superfluid within a fully microscopic time-dependent three-dimensional approach. The magnitude and even the sign of the force between the quantized vortex
In this book chapter we review plasma crystals in the laboratory, in the interior of white dwarf stars, and in the crust of neutron stars. We describe a molecular dynamics formalism and show results for many neutron star crust properties including ph
Force-free pulsar magnetospheres develop a large scale poloidal electric current circuit that flows along open magnetic field lines from the neutron star to the termination shock. The electric current closes through the interior of the neutron star w
We present an efficient and general method to compute vortex-pinning interactions - which arise in neutron stars, superconductors, and trapped cold atoms - at arbitrary separations using real-time dynamics. This method overcomes uncertainties associa