ترغب بنشر مسار تعليمي؟ اضغط هنا

Blue Luminescence and the Presence of Small PAHs in the ISM

62   0   0.0 ( 0 )
 نشر من قبل Uma P. Vijh
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Blue Luminescence (BL) was first discovered in a proto-planetary nebula, the Red Rectangle (RR) surrounding the post-AGB star HD 44179. BL has been attributed to fluorescence by small, 3-4 ringed neutral polycyclic aromatic hydrocarbon (PAH) molecules, and was thought to be unique to the RR environment where such small molecules are actively being produced and shielded from the harsh interstellar radiation by a dense circumstellar disk. In this paper we present the BL spectrum detected in several ordinary reflection nebulae illuminated by stars having temperatures between 10,000 -- 23,000 K. All these nebulae are known to also exhibit the infrared emission features called aromatic emission features (AEFs) attributed to large PAHs. We present the spatial distribution of the BL in these nebulae. In the case of Ced~112, the BL is spatially correlated with mid-IR emission structures attributed to AEFs. These observations provide evidence for grain processing and possibly for in-situ formation of small grains and large molecules from larger aggregates. Most importantly, the detection of BL in these ordinary reflection nebulae suggests that the BL carrier is an ubiquitous component of the ISM and is not restricted to the particular environment of the RR.

قيم البحث

اقرأ أيضاً

We re-examined photometry (VBLUW, UBV, uvby) of the yellow hypergiant HR 5171A made a few decades ago. In that study no proper explanation could be given for the enigmatic brightness excesses in the L band (VBLUW system, lambda_eff=3838 A). In the pr esent paper, we suggest that this might have been caused by blue luminescence (BL), an emission feature of neutral polycyclic aromatic hydrocarbon molecules (PAHs), discovered in 2004. It is a fact that the highest emission peaks of the BL lie in the L band. Our goals were to investigate other possible causes, and to derive the fluxes of the emission. We used two-colour diagrams based on atmosphere models, spectral energy distributions, and different extinctions and extinction laws, depending on the location of the supposed BL source: either in Gum48d on the background or in the envelope of HR 5171A. False L-excess sources, such as a hot companion, a nearby star, or some instrumental effect, could be excluded. Also, emission features from a hot chromosphere are not plausible. The fluxes of the L excess, recorded in the data sets of 1971, 1973, and 1977 varied (all in units of 10^(-10) W m^(-2) micron^(-1)) between 1.4 to 21, depending on the location of the source. A flux near the low side of this range is preferred. Small brightness excesses in uv (uvby system) were present in 1979, but its connection with BL is doubtful. For the L fluxes we consider the lowest values as more realistic. The uncertainties are 20-30 %. Similar to other yellow hypergiants, HR 5171A showed powerful brightness outbursts, particularly in the 1970s. A release of stored H-ionization energy by atmospheric instabilities could create BL emitted by neutral PAHs.
Following our initial discovery of blue luminescence in the spectrum of the Red Rectangle (RR) and its identification as fluorescence by small three- to four-ringed polycyclic aromatic hydrocarbon (PAH) molecules, we report on the spatial correlation between the blue luminescence and the 3.3 micron emission, commonly attributed to small, neutral PAH molecules, and on the newly-derived UV/optical attenuation curve for the central source of the RR, HD 44179. Both results provide strong additional evidence for the presence of small PAH molecules with masses of less than 250 a.m.u. in the RR, which supports the attribution of the blue luminescence to fluorescence by the same molecules. We contrast the excellent spatial correlation of the two former emissions with the distinctly different spatial distribution of the extended red emission (ERE) and of the dust-scattered light within the RR. The UV/optical attenuation curve of the central star is unlike any interstellar extinction curve and is interpreted as resulting from circumstellar opacity alone. Major contributions to this opacity are absorptions in broad bands in the mid-UV, contributing to the electronic excitation of the luminescing PAH molecules, and a sharp ionization discontinuity near 7.5 eV in the far-UV, which places a sharp upper limit on the masses of the PAH molecules that are responsible for this absorption. The strength of the far-UV absorption leads to an abundance of the PAH molecules of 10^{-5} relative to hydrogen in the RR. Such small PAHs are perhaps unique to the environment in the RR, where they are shielded from harsh radiation by the dense circmstellar disk.
We present recent UV laboratory spectra of various polycyclic aromatic hydrocarbons (PAHs) and explore the potential of these molecules as carriers of the DIBs. From a detailed comparison of gas-phase and Ne-matrix absorption spectra of anthracene, p henanthrene, pyrene, 2,3-benzofluorene, benzo[ghi]perylene, and hexabenzocoronene with new interstellar spectra, we infer upper limits in the abundance of these PAHs in the interstellar medium. Upper limits in the column densities of anthracene of $0.8 - 2.8 times 10^{12}$ cm$^{-2}$ and of pyrene and 2,3-benzofluorene ranging from $2 - 8 times 10^{12}$ cm$^{-2}$ are inferred. Upper limits in the column densities of benzo[ghi]perylene are $0.9 - 2.4 times 10^{13}$ and $10^{14}$ cm$^{-2}$ for phenanthrene. The measurements indicate fractional abundances of anthracene, pyrene, and 2,3-benzofluorene of a few times $10^{-10}$. Upper limits in the fractional abundance of benzo[ghi]perylene of a few times $10^{-9}$ and of phenanthrene of few times $10^{-8}$ are inferred. {Toward CPD $-32^circ 1734$, we found near 3584 {AA} an absorption line of OH$^+$, which was discovered in the interstellar medium only very recently. The fractional abundances of PAHs inferred here are up to two orders of magnitude lower than estimated total PAH abundances in the interstellar medium. This indicates that either neutral PAHs are not abundant in translucent molecular clouds, or that a PAH population with a large variety of molecules is present.
This work proposes deuteronated PAH (DPAH+ ) molecules as a potential carrier of the 4.4 and 4.65 {mu}m mid infrared emission bands that have been observationally detected towards the Orion and M17 regions. Density Functional Theory calculations have been carried out on DPAH+ molecules to see the variations in the spectral behaviour from that of a pure PAH. DPAH+ molecules show features that arise due to the stretching of the aliphatic C-D bond. Deuterated PAHs have been previously reported as carriers for such features. However, preferred conditions of ionization of PAHs in the interstellar medium (ISM) indicates the possibility of the formation of DPAH+ molecules. Comparison of band positions of DPAH+ s shows reasonable agreement with the observations. We report the effect of size of the DPAH+ molecules on band positions and intensities. This study also reports a D/H ratio ([D/H]sc ; the ratio of C-D stretch and C-H stretch bands per [D/H]num ) that is decreasing with the increasing size of DPAH+ s. It is noted that large DPAH+ molecules (no. of C atoms ~ 50) match the D/H ratio that has been estimated from observations. This ratio offers prospects to study the deuterium abundance and depletion in the ISM.
123 - L. Dunne , Z. Zhang , P. de Vis 2019
The Herschel-ATLAS unbiased survey of cold dust in the local Universe is dominated by a surprising population of very blue (FUV-K < 3.5), dust-rich galaxies with high gas fractions (f_HI = M_HI/(M*+M_HI)>0.5)). Dubbed `Blue and Dusty Gas Rich Sources (BADGRS) they have cold diffuse dust temperatures, and the highest dust-to-stellar mass ratios of any galaxies in the local Universe. Here, we explore the molecular ISM in a representative sample of BADGRS, using very deep CO(J_up=1,2,3) observations across the central and outer disk regions. We find very low CO brightnesses (Tp=15-30 mK), despite the bright far-infrared emission and metallicities in the range 0.5<Z/Z_sun<1.0. The CO line ratios indicate a range of conditions with R_21=0.6-2.1 and R_31=0.2-1.2. Using a metallicity dependent conversion from CO luminosity to molecular gas mass we find M_H2/M_d=7-27 and Sigma_H2=0.5-6 M_sun pc^-2, around an order of magnitude lower than expected. The BADGRS have lower molecular gas depletion timescales (tau_d = 0.5 Gyr) than other local spirals, lying offset from the Kennicutt-Schmidt relation by a similar factor to Blue Compact Dwarf galaxies. The cold diffuse dust temperatures in BADGRS (13-16 K) require an interstellar radiation field 10-20 times lower than that inferred from their observed surface brightness. We speculate that the dust in these sources has either a very clumpy geometry or a very different opacity in order to explain the cold temperatures and lack of CO emission. BADGRS also have low UV attenuation for their UV colour suggestive of an SMC-type dust attenuation curve, different star formation histories or different dust/star geometry. They lie in a similar part of the IRX-beta space as z=5 galaxies and may be useful as local analogues for high gas fraction galaxies in the early Universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا