ﻻ يوجد ملخص باللغة العربية
Constraining simultaneously the Dark Energy(DE) equation of state and the curvature of the Universe is difficult due to strong degeneracies. To circumvent this problem when analyzing data it is usual to assume flatness to constrain DE, or conversely, to assume that DE is a cosmological constant to constrain curvature. In this paper, we quantify the impact of such assumptions in view of future large surveys. We simulate future data for type Ia Supernovae (SNIa), Cosmic Microwave Background (CMB) and Baryon Acoustic Oscillations (BAO) for a large range of fiducial cosmologies allowing a small spatial curvature. We take into account a possible time evolution of DE through a parameterized equation of state : $w(a) = w_0 + (1-a) w_a$. We then fit the simulated data with a wrong assumption on the curvature or on the DE parameters. For a fiducial $Lambda$CDM cosmology, if flatness is incorrectly assumed in the fit and if the true curvature is within the ranges $0.01<Omega_k<0.03$ and $-0.07<Omega_k<-0.01$, one will conclude erroneously to the presence of an evolving DE, even with high statistics. On the other hand, models with curvature and dynamical DE can be confused with a flat $Lambda$CDM model when the fit ignores a possible DE evolution. We find that, in the future, with high statistics, such risks of confusion should be limited, but they are still possible, and biases on the cosmological parameters might be important. We conclude on recalling that, in the future, it will be mandatory to perform some complete multi-probes analyses, leaving the DE parameters as well as the curvature as free parameters.
We investigate how the nature of dark energy affects the determination of the curvature of the universe from recent observations. For this purpose, we consider the constraints on the matter and dark energy density using observations of type Ia supern
We present limits on the parameters of the o$Lambda$CDM, $w_0$CDM, and $w_0 w_a$CDM models obtained from the joint analysis of the full-shape, baryon acoustic oscillations (BAO), big bang nucleosynthesis (BBN) and supernovae data. Our limits are full
In this work, we first discuss the possibility that dark energy models with negative energy density values in the past can alleviate the $H_0$ tension, as well as the discrepancy with the baryon acoustic oscillation (BAO) Lyman-$alpha$ data, both whi
We use the Constitution supernova, the baryon acoustic oscillation, the cosmic microwave background, and the Hubble parameter data to analyze the evolution property of dark energy. We obtain different results when we fit different baryon acoustic osc
Upcoming Weak Lensing (WL) surveys can be used to constrain Dark Energy (DE) properties, namely if tomographic techniques are used to improve their sensitivity. In this work, we use a Fisher matrix technique to compare the power of CMB anisotropy and