ﻻ يوجد ملخص باللغة العربية
We present limits on the parameters of the o$Lambda$CDM, $w_0$CDM, and $w_0 w_a$CDM models obtained from the joint analysis of the full-shape, baryon acoustic oscillations (BAO), big bang nucleosynthesis (BBN) and supernovae data. Our limits are fully independent of the data on the cosmic microwave background (CMB) anisotropies, but rival the CMB constraints in terms of parameter error bars. We find the spatial curvature consistent with a flat universe $Omega_k=-0.043_{-0.036}^{+0.036}$ ($68%$ C.L.); the dark-energy equation of state parameter $w_0$ is measured to be $w_0=-1.031_{-0.048}^{+0.052}$ ($68%$ C.L.), consistent with a cosmological constant. This conclusion also holds for the time-varying dark energy equation of state, for which we find $w_0=-0.98_{-0.11}^{+0.099}$ and $w_a=-0.33_{-0.48}^{+0.63}$ (both at $68%$ C.L.). The exclusion of the supernovae data from the analysis does not significantly weaken our bounds. This shows that using a single external BBN prior, the full-shape and BAO data can provide strong CMB-independent constraints on the non-minimal cosmological models.
We study a phenomenological class of models where dark matter converts to dark radiation in the low redshift epoch. This class of models, dubbed DMDR, characterizes the evolution of comoving dark matter density with two extra parameters, and may be a
Baryon Acoustic Oscillation (BAO) surveys will be a leading method for addressing the dark energy challenge in the next decade. We explore in detail the effect of allowing for small amplitude admixtures of general isocurvature perturbations in additi
Constraining simultaneously the Dark Energy(DE) equation of state and the curvature of the Universe is difficult due to strong degeneracies. To circumvent this problem when analyzing data it is usual to assume flatness to constrain DE, or conversely,
We investigate the observational viability of a class of interacting dark energy (iDE) models in the light of the latest Cosmic Microwave Background (CMB), type Ia supernovae (SNe) and SH0ES Hubble parameter measurements. Our analysis explores the as
We present new constraints on coupled dark energy from the recent measurements of the Cosmic Microwave Background Anisotropies from the Planck satellite mission. We found that a coupled dark energy model is fully compatible with the Planck measuremen